Amino Acids

, Volume 46, Issue 1, pp 21–30 | Cite as

Effect of taurine on ischemia–reperfusion injury

  • Stephen W. SchafferEmail author
  • Chian Ju Jong
  • Takashi Ito
  • Junichi Azuma
Review Article


Taurine is an abundant β-amino acid that regulates several events that dramatically influence the development of ischemia–reperfusion injury. One of these events is the extrusion of taurine and Na+ from the cell via the taurine/Na+ symport. The loss of Na+ during the ischemia–reperfusion insult limits the amount of available Na+ for Na+/Ca2+ exchange, an important process in the development of Ca2+ overload and the activation of the mitochondrial permeability transition, a key process in ischemia–reperfusion mediated cell death. Taurine also prevents excessive generation of reactive oxygen species by the respiratory chain, an event that also limits the activation of the MPT. Because taurine is an osmoregulator, changes in taurine concentration trigger “osmotic preconditioning,” a process that activates an Akt-dependent cytoprotective signaling pathway that inhibits MPT pore formation. These effects of taurine have clinical implications, as experimental evidence reveals potential promise of taurine therapy in preventing cardiac damage during bypass surgery, heart transplantation and myocardial infarction. Moreover, severe loss of taurine from the heart during an ischemia–reperfusion insult may increase the risk of ventricular remodeling and development of heart failure.


Taurine Ischemic preconditioning Calcium overload Mitochondrial permeability transition Reaction oxygen species 


Conflict of interest

The authors declare that there are no conflicts of interest.


  1. Allo SN, Bagby L, Schaffer SW (1997) Taurine depletion, a novel mechanism for cardioprotection from regional ischemia. Am J Physiol 273:H1956–H1961PubMedGoogle Scholar
  2. Babsky A, Hekmatyar S, Wehrli S, Doliba N, Osbakken M, Bansal N (2002) Influence of ischemic preconditioning on intracellular sodium, pH, and cellular energy status in isolated perfused heart. Exp Biol Med 227(7):520–528Google Scholar
  3. Bai Y, Attardi G (1998) The mtDNA-encoded ND6 subunit of mitochondrial NADH dehydrogenase is essential for the assembly of the membrane arm of the respiratory function of the enzyme. EMBO J 17:4848–4858PubMedCrossRefGoogle Scholar
  4. Baines CP (2009) The molecular composition of the mitochondrial permeability transition pore. J Mol Cell Cardiol 46:850–857PubMedCentralPubMedCrossRefGoogle Scholar
  5. Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL et al (2003) Protein kinase C-epsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 92:873–880PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chahine R, Feng J (1998) Protective effects of taurine against reperfusion-induced arrhythmias in isolated ischemic rat heart. Arzneimittelforschung 48:360–364PubMedGoogle Scholar
  7. Chen Z, Chua CC, Ho YS, Hamdy RC, Chua HB (2001) Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol 280:H2313–H2320Google Scholar
  8. Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ (2006) Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion. J Pharmacol Exp Ther 319:1405–1412PubMedCrossRefGoogle Scholar
  9. Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ (2008) Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Cell Physiol 294:C460–C466CrossRefGoogle Scholar
  10. Chen Q, Paillard M, Gomez L, Li H, Hu Y, Lesnefsky EJ (2012) Postconditioning modulates ischemia-damaged mitochondria during reperfusion. J Cardiovasc Pharmacol 59:101–108PubMedCrossRefGoogle Scholar
  11. Costa ADT, Pierre SV, Cohen MV, Downey JM, Garlid KD (2008) cGMP signallling in pre- and post-conditioning: the role of mitochondria. Cardiovasc Res 77:344–352PubMedCrossRefGoogle Scholar
  12. Crass MF III, Lombardini JB (1977) Loss of cardiac muscle taurine after acute left ventricular ischemia. Life Sci 21:951–958PubMedCrossRefGoogle Scholar
  13. Das S, Steenbergen C (2012) Mitochondrial adenine nucleotide transport and cardioprotection. J Mol Cell Cardiol 52:448–453PubMedCentralPubMedCrossRefGoogle Scholar
  14. Das S, Wong R, Rajapakse N, Murphy E, Steenbergen C (2008) Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation. Circ Res 103:983–991PubMedCentralPubMedCrossRefGoogle Scholar
  15. Eaton P, Li J-M, Hearse DJ, Shattock MJ (1999) Formation of 4-hydroxy-2-nonenal-modified proteins in ischemic rat heart. Am J Physiol 276:H935–H943PubMedGoogle Scholar
  16. Ferdinandy P, Schulz R, Baxter GF (2007) Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning and postconditioning. Pharmacol Rev 59:418–458PubMedCrossRefGoogle Scholar
  17. Franconi F, Stendardi I, Failli P, Matucci R, Baccaro C, Montorsi L, Bandinelli R, Giotta A (1985) The protective effects of taurine on hypoxia (performed in the absence of glucose) and on reoxygenation (in the presence of glucose) in guinea pig heart. Biochem Pharmacol 34:2611–2615PubMedCrossRefGoogle Scholar
  18. Hahn NE, Meischl C, Wijnker PJM, Musters RJP, Fornerod M, Janssen HWRM, Paulus WJ, van Rossum AC, Niessen HWM, Krijnen PAJ (2011) Nox2, p22phox and p47 phox are targeted to the nuclear pore complex in ischemic cardiomyocytes colocalizing with local reactive oxygen species. Cell Physiol Biochem 27:471–478PubMedCrossRefGoogle Scholar
  19. Halestrap AP, Clarke SJ, Khalilin I (2007) The mitochondrial permeability transition pore—from molecular mechanism to reperfusion injury. In: Schaffer SW, Suleiman MS (eds) Mitochondria: the dynamic organelle. Springer Science + Business Media, New York, pp 241–269CrossRefGoogle Scholar
  20. Hanna J, Chahine R, Aftimos G, Nader M, Mounayar A, Esseily F, Chamat S (2004) Protective effect of taurine against free radical damage in the rat myocardium. Exp Toxicol Pathol 56:189–194PubMedCrossRefGoogle Scholar
  21. Imahashi K, Schneider MD, Steenbergen C, Murphy E (2004) Transgenic expression of Bcl-2 modulates energy metabolism, prevent cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circ Res 95:734–741PubMedCrossRefGoogle Scholar
  22. Imura H, Caputo M, Parry A, Pawade A, Angelinil GD, Suleiman M-S (2001) Age-dependent and hypoxia-related differences in myocardial protection during pediatric open heart surgery. Circulation 103:1551–1556PubMedCrossRefGoogle Scholar
  23. Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T, Ueki K, Yoshiyama M, Ikawa M, Okabe M, Schaffer SW, Fujio Y, Azuma J (2008) Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 44:927–937PubMedCrossRefGoogle Scholar
  24. Jong CJ, Azuma J, Schaffer SW (2011) Role of mitochondrial permeability transition of taurine deficiency-induced apoptosis. Exp Clin Cardiol 16:125–128PubMedCentralPubMedGoogle Scholar
  25. Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–2232PubMedCrossRefGoogle Scholar
  26. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW et al (2004) Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549PubMedCentralPubMedGoogle Scholar
  27. Karmazyn M, Sawyer M, Fliegel L (2005) The Na(+)/H(+) exchanger: a target for cardiac therapeutic intervention. Curr Drug Targets Cardiovasc Haematol Disord 5:323–335PubMedCrossRefGoogle Scholar
  28. Kavianipour M, Wikstrom G, Ronquist G, Waldenstrom A (2003) Validity of elevated interstitial levels of taurine as a predictor of myocardial ischemic injury. Amino Acids 27:107–111PubMedGoogle Scholar
  29. Kirino Y, Yasukawa T, Ohta S, Akira S, Ishihara K, Watanabe K, Suzuki T (2004) Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci 101:15070–15075PubMedCrossRefGoogle Scholar
  30. Kohr MJ, Aponte AM, Sun J, Wang G, Murphy E, Bucek M et al (2011) Characterization of potential 5-nitrosylation sites in the myocardium. Am J Physiol Heart Circ Physiol 300:H1327–H1335PubMedCrossRefGoogle Scholar
  31. Kokoszka J, Waymire KG, Levy SE, Slligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465PubMedCentralPubMedCrossRefGoogle Scholar
  32. Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26:463–471PubMedCrossRefGoogle Scholar
  33. Kramer JH, Chovan JP, Schaffer SW (1981) Effect of taurine on calcium paradox and ischemic heart failure. Am J Physiol Circ Physiol 240:H238–H246Google Scholar
  34. Krieg T, Yang XM, Downey JM, Schaffer SW, Cohen MV (2004) Augmented taurine release is not the mechanism of ischemic preconditioning’s cardioprotection. Amino Acids 26:263–266PubMedCrossRefGoogle Scholar
  35. Lesnefsky EJ, Slabe TJ, Stoll MS, Minkler PE, Hoppel CL (2001) Myocardial ischemia selectively depleted cardiolipin in rabbit heart subsarcolemmal mitochondria. Am J Physiol Heart Circ Physiol 280:H2770–H2778PubMedGoogle Scholar
  36. Meischl C, Krijnene PAJ, Sipkens JA, Cillessen SAGM, Munoz IG, Okroj M, Ramska M, Muller A, Visser CA, Musters RJP, Simonides WS, Hack CE, Roos CE, Niessen HWM (2006) Ischemia induces nuclear Nox2 expression in cardiomyocytes and subsequently activates apoptosis. Apoptosis 11:913–921PubMedCrossRefGoogle Scholar
  37. Milei J, Ferreira R, Llesuy S, Forcada P, Covarrubias J, Boveris A (1992) Reduction of reperfusion injury with preoperative rapid intravenous infusion of taurine during myocardial revascularization. Am Heart J 123:339–345PubMedCrossRefGoogle Scholar
  38. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609PubMedCentralPubMedCrossRefGoogle Scholar
  39. Novotny MJ, Hogan PM, Paley DM, Adams HR (1991) Systolic and diastolic dysfunction of the left ventricle induced by dietary taurine deficiency in cats. Am J Physiol 261:H121–H127PubMedGoogle Scholar
  40. Oriyanhan W, Yamazaki K, Miwa S, Takaba K, Ikeda T, Komeda M (2005) Taurine prevents myocardial ischemia/reperfusion-induced oxidative stress and apoptosis in prolonged hypothermic rat heart preservation. Heart Vessels 20:278–285PubMedCrossRefGoogle Scholar
  41. Oz E, Erbas D, Gelir E, Aricioglu A (1999) Taurine and calcium interaction in protection of myocardium exposed to ischemic reperfusion injury. Gen Pharmacol 33:137–141PubMedCrossRefGoogle Scholar
  42. Pastukh V, Ricci C, Solodushko V, Mozaffari M, Schaffer SW (2005) Contribution of the PI 3-kinase/Akt survival pathway toward osmotic preconditioning. Mol Cell Biochem 269:59–67PubMedCrossRefGoogle Scholar
  43. Quarrie R, Cramer BM, Lee DS, Steinbaugh GE, Erdahl W, Pfeiffer DR, Zweier JL, Crestanello JA (2011) Ischemic preconditioning decreases mitochondrial proton leak and reactive oxygen species production in postischemic heart. J Surg Res 165:5–14PubMedCentralPubMedCrossRefGoogle Scholar
  44. Rasola A, Bernardi P (2011) Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium 50:222–233PubMedCrossRefGoogle Scholar
  45. Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB (1986) Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol 251:H1306–H1315Google Scholar
  46. Robin E, Guzy RD, Loor G, Iwase H, Waypa GB, Marks JD, Vanden Hoek TL, Schumacker PT (2007) Oxidant stress during simulated ischemia primes cardiomyocytes for cell death during reperfusion. J Biol Chem 282:19133–19143PubMedCrossRefGoogle Scholar
  47. Sahin MA, Yucel O, Guler A, Doganci S, Jahollari A, Cingoz F, Arslan S, Gamsizkan M, Yaman H, Demirkilic U (2011) Is there any cardioprotective role of taurine during cold ischemic period following global myocardial ischemia? J Cardiothorac Surg 6:31PubMedCentralPubMedCrossRefGoogle Scholar
  48. Satoh H, Minoru H (1997) Actions of taurine on the L-type channel current in guinea pig ventricular cardiomyocytes. J Cardiovasc Pharmacol 30:711–716PubMedCrossRefGoogle Scholar
  49. Sawamura A, Sperelakis N, Azuma J (1986) Protective effect of taurine against decline of cardiac slow action potentials during hypoxia. Eur J Pharmacol 120:235–239PubMedCrossRefGoogle Scholar
  50. Schaffer SW, Ballard Croft C, Solodushko V (2000) Cardioprotective effect of chronic hyperglycemia: effect of hypoxia-induced apoptosis and necrosis. Am J Physiol Circ Physiol 278:H1948–H1954Google Scholar
  51. Schaffer SW, Solodushko V, Kakhniashvili D (2002) Beneficial effect of taurine depletion on osmotic sodium and calcium loading during chemical hypoxia. Am J Physiol Cell Physiol 282:C1113–C1120PubMedCrossRefGoogle Scholar
  52. Song D, O’Regan MH, Phillis JW (1998) Mechanisms of amino acid release from the isolated anoxic/reperfused rat heart. Eur J Pharmacol 351:313–322PubMedCrossRefGoogle Scholar
  53. Steenbergen C, Hill ML, Jennings RB (1985) Volume regulation and plasma membrane injury in aerobic, anaerobic, and ischemic myocardium in vitro. Effects of osmotic cell swelling on plasma membrane integrity. Circ Res 57(6):864–875PubMedCrossRefGoogle Scholar
  54. Suleiman M-S, Rodrigo GC, Chapman RA (1992) Interdependence of intracellular taurine and sodium in guinea pig heart. Cardiovasc Res 26:897–905PubMedCrossRefGoogle Scholar
  55. Suleiman M-S, Moffatt AC, Dihmis WC, Caputo M, Hutter JA, Angelini GD, Bryan AJ (1997) Effect of ischaemia and reperfusion on the intracellular concentration of taurine and glutamine in the hearts of patients undergoing coronary artery surgery. Biochim Biophys Acta 1324:223–231PubMedCrossRefGoogle Scholar
  56. Sussman MA, Volkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M (2011) Myocardial Akt: the onmipresent nexus. Physiol Rev 91:1023–1070PubMedCentralPubMedCrossRefGoogle Scholar
  57. Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K (2002) Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J 21:6581–6589PubMedCrossRefGoogle Scholar
  58. Takahashi K, Ohyabu Y, Solodushko V, Takatani T, Itoh T, Schaffer SW, Azuma J (2003) Taurine renders cell resistant to ischemia-induced injury in cultured neonatal rat cardiomyocytes. J Cardiovasc Pharmacol 41:726–733PubMedCrossRefGoogle Scholar
  59. Takatani T, Takahashi K, Uozumi Y, Shikata E, Yamamoto Y, Ito T, Matsuda T, Schaffer SW, Fujio Y, Azuma J (2004a) Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am J Physiol 287:C949–C953CrossRefGoogle Scholar
  60. Takatani T, Takahashi K, Uozumi Y, Matsuda T, Ito T, Schaffer SW, Fujio Y, Azuma J (2004b) Taurine prevents the ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes through Akt/caspase-9 pathway. Biochem Biohys Res Commun 316:484–489CrossRefGoogle Scholar
  61. Ueno T, Iguro Y, Yotsumoto G, Fukumoto Y, Nakamura K, Miyamoto TA, Sakata R (2007) Taurine at early reperfusion significantly reduces myocardial damage and preserves cardiac function in the isolated rat heart. Resuscitation 73:287–295PubMedCrossRefGoogle Scholar
  62. Vary TC, Angelakos ET, Schaffer SW (1979) Relationship between adenine nucleotide metabolism and irreversible ischemic tissue damage in isolated perfused rat heart. Circ Res 45:218–225PubMedCrossRefGoogle Scholar
  63. Waldenstrom A, Ronquist G, Aberg AM, Ahlstrom K, Hauck P, Abrahamsson P, Johansson G, Biber B, Haney MF (2012) Ischaemic preconditioning reduced myocardial calcium overload in coronary-occluded pig hearts shown by continuous in vivo assessment using microdialysis. Clin Physiol Funct Imaging 32:133–138PubMedCrossRefGoogle Scholar
  64. Woodfield K, Ruck A, Brdiczka D, Halestrap AP (1998) Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J 336:287–290PubMedGoogle Scholar
  65. Yamori Y, Liu L, Ikeda K, Miura A, Mizushima S, Miki T, Nara Y (2001) Distribution of twenty-four hour urinary taurine excretion and association with ischemic heart disease mortality in 24 populations of 16 countries: results from the WHO-CARDIAC Study. Hypertens Res 24:453–457PubMedCrossRefGoogle Scholar
  66. Yasukawa T, Suzuki T, Ohta S, Watanabe K (2002) Wobble modification defect suppresses translational activity of tRNAs with MERRF and MELAS mutations. Mitochondrion 2:129–141PubMedCrossRefGoogle Scholar
  67. Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151PubMedGoogle Scholar
  68. Zhu X, Liu B, Zhou S, Chen YR, Deng Y, Zweier JL, He G (2007) Ischemic preconditioning prevents in vivo hyperoxygenation in postischemic myocardium with preservation of mitochondrial oxygen consumption. Am J Physiol Heart Circ Physiol 293:H1442–1450PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Stephen W. Schaffer
    • 1
    Email author
  • Chian Ju Jong
    • 1
  • Takashi Ito
    • 2
  • Junichi Azuma
    • 2
  1. 1.Department of Pharmacology, College of MedicineUniversity of South AlabamaMobileUSA
  2. 2.School of PharmacyHyogo University of Health SciencesKobeJapan

Personalised recommendations