Skip to main content
Log in

Involvement of hippocampal CAMKII/CREB signaling in the spatial memory retention induced by creatine

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Although Creatine (Cr) and Phosphocreatine (PCr) systems play a key role in cellular energy and energy transport in neuronal cells, its implications for learning and memory are still controversial. Thus, we decided to investigate the involvement of cAMP-dependent protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cAMP responsive element binding protein (CREB) in the spatial consolidation after an intrahippocampal injection of Cr. Statistical analysis revealed that Cr (2.5 nmol/hippocampus) (post-training) decreased the latency for escape and the mean number of errors on Barnes maze test. Post-training co-administration of the PKA inhibitor (H-89 25 ρmol/hippocampus) did not alter the facilitatory effect of Cr in this memory test. On the other hand, Cr-induced spatial retention was reverted by co-administration of the CaMKII inhibitor (STO-609 5 nmol/hippocampus). Neurochemical analysis revealed that intrahippocampal injection of Cr, when analyzed after 30 min rather than after 3 h, increased the levels of pCREB and pCaMKII but not pPKA levels. Statistical analysis also revealed that the post-training co-administration of STO-609 but not H-89 reversed the increase of pCREB levels induced by Cr. The results presented in this report suggest that intracellular CaMKII/CREB pathway plays a key role in the Cr-induced spatial retention. Thus, it is plausible to propose that Cr plays a putative role as a neuromodulator in the brain, and that at least some of its effects may be mediated by intracellular CaMKII/CREB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abel T, Nguyen PV, Barad M, Deuel TA, Kandel ER, Bourtchouladze R (1997) Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88(5):615–626

    Article  PubMed  CAS  Google Scholar 

  • Ajilore O, Haroon E, Kumaran S, Darwin C, Binesh N, Mintz J, Miller J, Thomas MA, Kumar A (2007) Measurement of brain metabolites in patients with type 2 diabetes and major depression using proton magnetic resonance spectroscopy. Neuropsychopharmacology 32(6):1224–1231

    Article  PubMed  CAS  Google Scholar 

  • Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89(1):121–145

    Article  PubMed  CAS  Google Scholar 

  • Almeida LS, Salomons GS, Hogenboom F, Jakobs C, Schoffelmeer AN (2006) Exocytotic release of creatine in rat brain. Synapse 60(2):118–123

    Article  PubMed  CAS  Google Scholar 

  • Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76(4):329–343

    Article  PubMed  CAS  Google Scholar 

  • Bach ME, Hawkins RD, Osman M, Kandel ER, Mayford M (1995) Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell 81(6):905–915

    Article  PubMed  CAS  Google Scholar 

  • Bachevalier J, Nemanic S (2008) Memory for spatial location and object-place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex. Hippocampus 18(1):64–80

    Article  PubMed  Google Scholar 

  • Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93(1):74–104

    Article  PubMed  CAS  Google Scholar 

  • Bernabeu R, Bevilaqua L, Ardenghi P, Bromberg E, Schmitz P, Bianchin M, Izquierdo I, Medina JH (1997) Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc Natl Acad Sci USA 94(13):7041–7046

    Article  PubMed  CAS  Google Scholar 

  • Braissant O, Henry H, Beard E, Uldry J (2011) Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids 40(5):1315–1324

    Article  PubMed  CAS  Google Scholar 

  • Casu MA, Sanna A, Spada GP, Falzoi M, Mongeau R, Pani L (2007) Effects of acute and chronic valproate treatments on p-CREB levels in the rat amygdala and nucleus accumbens. Brain Res 1141:15–24

    Article  PubMed  CAS  Google Scholar 

  • Cippitelli A, Zook M, Bell L, Damadzic R, Eskay RL, Schwandt M, Heilig M (2010) Reversibility of object recognition but not spatial memory impairment following binge-like alcohol exposure in rats. Neurobiol Learn Mem 94(4):538–546

    Article  PubMed  CAS  Google Scholar 

  • Colombo PJ, Brightwell JJ, Countryman RA (2003) Cognitive strategy-specific increases in phosphorylated cAMP response element-binding protein and c-Fos in the hippocampus and dorsal striatum. J Neurosci 23(8):3547–3554

    PubMed  CAS  Google Scholar 

  • Dechent P, Pouwels PJ, Wilken B, Hanefeld F, Frahm J (1999) Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Physiol 277(3 Pt 2):R698–R704

    PubMed  CAS  Google Scholar 

  • File SE, Gonzalez LE (1996) Anxiolytic effects in the plus-maze of 5-HT1A-receptor ligands in dorsal raphe and ventral hippocampus. Pharmacol Biochem Behav 54(1):123–128

    Article  PubMed  CAS  Google Scholar 

  • Igaz LM, Vianna MR, Medina JH, Izquierdo I (2002) Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning. J Neurosci 22(15):6781–6789

    PubMed  CAS  Google Scholar 

  • Izquierdo I, Bevilaqua LR, Rossato JI, Bonini JS, Medina JH, Cammarota M (2006) Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci 29(9):496–505

    Article  PubMed  CAS  Google Scholar 

  • McHugh TJ, Blum KI, Tsien JZ, Tonegawa S, Wilson MA (1996) Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell 87(7):1339–1349

    Article  PubMed  CAS  Google Scholar 

  • McMorris T, Harris RC, Swain J, Corbett J, Collard K, Dyson RJ, Dye L, Hodgson C, Draper N (2006) Effect of creatine supplementation and sleep deprivation, with mild exercise, on cognitive and psychomotor performance, mood state, and plasma concentrations of catecholamines and cortisol. Psychopharmacology 185(1):93–103

    Article  PubMed  CAS  Google Scholar 

  • McMorris T, Harris RC, Howard AN, Langridge G, Hall B, Corbett J, Dicks M, Hodgson C (2007) Creatine supplementation, sleep deprivation, cortisol, melatonin and behavior. Physiol Behav 90(1):21–28

    Article  PubMed  CAS  Google Scholar 

  • Medeiros R, Prediger RD, Passos GF, Pandolfo P, Duarte FS, Franco JL, Dafre AL, Di Giunta G, Figueiredo CP, Takahashi RN, Campos MM, Calixto JB (2007) Connecting TNF-alpha signaling pathways to iNOS expression in a mouse model of Alzheimer’s disease: relevance for the behavioral and synaptic deficits induced by amyloid beta protein. J Neurosci 27(20):5394–5404

    Article  PubMed  CAS  Google Scholar 

  • Mishkin M (1978) Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273(5660):297–298

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto E (2006) Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J Pharmacol Sci 100(5):433–442

    Article  PubMed  CAS  Google Scholar 

  • Mizuno K, Giese KP (2005) Hippocampus-dependent memory formation: do memory type-specific mechanisms exist? J Pharmacol Sci 98(3):191–197

    Article  PubMed  CAS  Google Scholar 

  • Mizuno M, Yamada K, Maekawa N, Saito K, Seishima M, Nabeshima T (2002) CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behav Brain Res 133(2):135–141

    Article  PubMed  CAS  Google Scholar 

  • Murray EA, Mishkin M (1998) Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J Neurosci 18(16):6568–6582

    PubMed  CAS  Google Scholar 

  • Oliveira MS, Furian AF, Fighera MR, Fiorenza NG, Ferreira J, Rubin MA, Mello CF, Royes LF (2008) The involvement of the polyamines binding sites at the NMDA receptor in creatine-induced spatial learning enhancement. Behav Brain Res 187(1):200–204

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C, Pennisi M, Topple A (1985) Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J Neurosci Methods 13(2):139–143

    Article  PubMed  CAS  Google Scholar 

  • Persky AM, Brazeau GA (2001) Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev 53(2):161–176

    PubMed  CAS  Google Scholar 

  • Porte Y, Buhot MC, Mons NE (2008) Spatial memory in the Morris water maze and activation of cyclic AMP response element-binding (CREB) protein within the mouse hippocampus. Learn Mem 15(12):885–894

    Article  PubMed  Google Scholar 

  • Rae C, Digney AL, McEwan SR, Bates TC (2003) Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, cross-over trial. Proc Biol Sci 270(1529):2147–2150

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues SM, Farb CR, Bauer EP, LeDoux JE, Schafe GE (2004) Pavlovian fear conditioning regulates Thr286 autophosphorylation of Ca2 +/calmodulin-dependent protein kinase II at lateral amygdala synapses. J Neurosci 24(13):3281–3288

    Article  PubMed  CAS  Google Scholar 

  • Romero-Calvo I, Ocon B, Martinez-Moya P, Suarez MD, Zarzuelo A, Martinez-Augustin O, de Medina FS (2010) Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem 401(2):318–320

    Article  PubMed  CAS  Google Scholar 

  • Rongo C (2002) A fresh look at the role of CaMKII in hippocampal synaptic plasticity and memory. BioEssays 24(3):223–233

    Article  PubMed  CAS  Google Scholar 

  • Rubin MA, Jurach A, Zanolla GR, Boemo RL, Souza DO, de Mello CF (1997) Intrahippocampal GMP administration improves inhibitory avoidance performance through GABAergic and glutamatergic mechanisms in rats. NeuroReport 8(17):3713–3716

    Article  PubMed  CAS  Google Scholar 

  • Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, Yagi T, Aizawa S, Inoue Y, Sugiyama H et al (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373(6510):151–155

    Article  PubMed  CAS  Google Scholar 

  • Sharifzadeh M, Sharifzadeh K, Naghdi N, Ghahremani MH, Roghani A (2005) Posttraining intrahippocampal infusion of a protein kinase AII inhibitor impairs spatial memory retention in rats. J Neurosci Res 79(3):392–400

    Article  PubMed  CAS  Google Scholar 

  • Silva AJ, Paylor R, Wehner JM, Tonegawa S (1992) Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257(5067):206–211

    Article  PubMed  CAS  Google Scholar 

  • Tan SE, Liang KC (1996) Spatial learning alters hippocampal calcium/calmodulin-dependent protein kinase II activity in rats. Brain Res 711(1–2):234–240

    Article  PubMed  CAS  Google Scholar 

  • Todd Roach J, Volmar CH, Dwivedi S, Town T, Crescentini R, Crawford F, Tan J, Mullan M (2004) Behavioral effects of CD40-CD40L pathway disruption in aged PSAPP mice. Brain Res 1015(1–2):161–168

    Article  PubMed  CAS  Google Scholar 

  • Tokumitsu H, Inuzuka H, Ishikawa Y, Ikeda M, Saji I, Kobayashi R (2002) STO-609, a specific inhibitor of the Ca(2+)/calmodulin-dependent protein kinase kinase. J Biol Chem 277(18):15813–15818

    Article  PubMed  CAS  Google Scholar 

  • Trifilieff P, Herry C, Vanhoutte P, Caboche J, Desmedt A, Riedel G, Mons N, Micheau J (2006) Foreground contextual fear memory consolidation requires two independent phases of hippocampal ERK/CREB activation. Learn Mem 13(3):349–358

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela MJ, Jones M, Wen W, Rae C, Graham S, Shnier R, Sachdev P (2003) Memory training alters hippocampal neurochemistry in healthy elderly. Neuroreport 14(10):1333–1337

    PubMed  Google Scholar 

  • Vazquez SI, Vazquez A, Pena de Ortiz S (2000) Different hippocampal activity profiles for PKA and PKC in spatial discrimination learning. Behav Neurosci 114(6):1109–1118

    Article  PubMed  CAS  Google Scholar 

  • Vianna MR, Izquierdo LA, Barros DM, Medina JH, Izquierdo I (1999) Intrahippocampal infusion of an inhibitor of protein kinase A separates short- from long-term memory. Behav Pharmacol 10(2):223–227

    Article  PubMed  CAS  Google Scholar 

  • Vianna MR, Izquierdo LA, Barros DM, Ardenghi P, Pereira P, Rodrigues C, Moletta B, Medina JH, Izquierdo I (2000) Differential role of hippocampal cAMP-dependent protein kinase in short- and long-term memory. Neurochem Res 25(5):621–626

    Article  PubMed  CAS  Google Scholar 

  • Watanabe A, Kato N, Kato T (2002) Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neurosci Res 42(4):279–285

    Article  PubMed  CAS  Google Scholar 

  • Winters BD, Forwood SE, Cowell RA, Saksida LM, Bussey TJ (2004) Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J Neurosci 24(26):5901–5908

    Article  PubMed  CAS  Google Scholar 

  • Winters BD, Saksida LM, Bussey TJ (2008) Object recognition memory: neurobiological mechanisms of encoding, consolidation and retrieval. Neurosci Biobehav Rev 32(5):1055–1070

    Article  PubMed  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80(3):1107–1213

    PubMed  CAS  Google Scholar 

  • Zola-Morgan S, Squire LR, Alvarez-Royo P, Clower RP (1991) Independence of memory functions and emotional behavior: separate contributions of the hippocampal formation and the amygdala. Hippocampus 1(2):207–220

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work supported by CNPq and CAPES. Oliveira M.S. is the recipient of CNPq (research grant #150905/2009-2). Souza M.A., Magni D.V., and Guerra G.P. are recipients of CAPES. We confirm that we have read the Journal’s position on issues regarding ethical publication and affirm that this report is consistent with those guidelines. In addition, we would like to state that all authors have seen and approved the study and that no part of the work has been published or is under consideration for publication elsewhere. Moreover, the present study was supported by government funding and has no financial or other relationship that might lead to a conflict of interest. We also would like to declare that all experiments were carried out according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80–23) revised 1996, and that the University Ethics Committee approved the respective protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Fernando Freire Royes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, M.A., Magni, D.V., Guerra, G.P. et al. Involvement of hippocampal CAMKII/CREB signaling in the spatial memory retention induced by creatine. Amino Acids 43, 2491–2503 (2012). https://doi.org/10.1007/s00726-012-1329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1329-4

Keywords

Navigation