Skip to main content
Log in

Dopamine receptor antagonism disrupts social preference in zebrafish: a strain comparison study

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Zebrafish form shoals in nature and in the laboratory. The sight of conspecifics has been found reinforcing in zebrafish learning tasks. However, the mechanisms of shoaling, and those of its reinforcing properties, are not known. The dopaminergic system has been implicated in reward among other functions and it is also engaged by drugs of abuse as shown in a variety of vertebrates including zebrafish. The ontogenetic changes in dopamine levels and, to a lesser degree, in serotonin levels, have been found to accompany the maturation of shoaling in zebrafish. Thus, we hypothesized that the dopaminergic system may contribute to shoaling in zebrafish. To test this we employed a D1-receptor antagonist and quantified behavioral responses of our subjects using a social preference (shoaling) paradigm. We found significant reduction of social preference induced by the D1-R antagonist, SCH23390, in the AB strain of zebrafish, an alteration that was not accompanied by changes in motor function or vision. We also detected D1-R antagonist-induced changes in the level of dopamine, DOPAC, serotonin and 5HIAA, respectively, in the brain of AB zebrafish as quantified by HPLC with electrochemical detection. We found the antagonist-induced behavioral changes to be absent and the levels of these neurochemicals to be lower in another zebrafish population, SF, demonstrating naturally occurring genetic variability in these traits. We conclude that this variability may be utilized to unravel the mechanisms of social behavior in zebrafish, a line of research that may be extended to other vertebrates including our own species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Imari L, Gerlai R (2008) Conspecifics as reward in associative learning tasks for zebrafish (Danio rerio). Behav Brain Res 189:216–219

    Article  PubMed  Google Scholar 

  • Alsop D, Vijayan MM (2008) Development of the corticosteroid stress axis and receptor expression in zebrafish. Am J Physiol Regul Integr Comp Physiol 294:R711–R719

    Article  CAS  PubMed  Google Scholar 

  • Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:815–834

    Article  CAS  PubMed  Google Scholar 

  • Bromley E, Brekke JS (2010) Assessing function and functional outcome in schizophrenia. Curr Top Behav Neurosci 4:3–21

    Article  PubMed  Google Scholar 

  • Buckett WR (1981) The role of GABA in analgesia and drug dependence. Rev Pure Appl Pharmacol Sci. 2:115–141

    CAS  PubMed  Google Scholar 

  • Buske C, Gerlai R (2011) Shoaling develops with age in zebrafish (Danio rerio). Prog Neuro-Psychopharm Biol Psych 35:1409–1415

    Article  Google Scholar 

  • Buske C, Gerlai R (2012) Maturation of shoaling behavior is accompanied by changes in the dopaminergic and serotonergic systems in zebrafish. Dev Psychobiol 54:28–35

    Article  CAS  PubMed  Google Scholar 

  • Caillé I, Dumartin B, Bloch B (1996) Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral neurons and its relation with dopaminergic innervation. Brain Res 730:17–31

    PubMed  Google Scholar 

  • Cameron DL, Williams JT (1993) Dopamine D1 receptors facilitate transmitter release. Nature 366:344–347

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee D, Gerlai R (2009) High precision liquid chromatography analysis of dopaminergic and serotoninergic responses to acute alcohol exposure in zebrafish. Behav Brain Res 200:208–213

    Article  CAS  PubMed  Google Scholar 

  • Crusio WE (2006) Inheritance of behavioral and neuroanatomical phenotypical variance: hybrid mice are not always more stable than inbreds. Behav Genet 36:723–731

    Article  PubMed  Google Scholar 

  • Darbin O, Risso JJ, Rostain JC (2010) Dopaminergic control of striatal 5-HT level at normobaric condition and at pressure. Undersea Hyperb Med 37:159–166

    CAS  PubMed  Google Scholar 

  • Diop L, Gottberg E, Brière R, Grondin L, Reader TA (1988) Distribution of dopamine D1 receptors in rat cortical areas, neostriatum, olfactory bulb and hippocampus in relation to endogenous dopamine contents. Synapse 2:395–405

    Article  CAS  PubMed  Google Scholar 

  • Dooley K, Zon LI (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10:252–256

    Article  CAS  PubMed  Google Scholar 

  • Emilien G, Maloteaux JM, Geurts M, Hoogenberg K, Cragg S (1999) Dopamine receptors–physiological understanding to therapeutic intervention potential. Pharmacol Ther 84:133–156

    Article  CAS  PubMed  Google Scholar 

  • Fernandes Y, Gerlai R (2009) Long-term behavioral changes in response to early developmental exposure to ethanol in zebrafish. Alcohol Clin Exp Res 33:601–609

    Article  CAS  PubMed  Google Scholar 

  • Fibiger HC, Phillips AG (1988) Mesocorticolimbic dopamine systems and reward. Ann NY Acad Sci 537:206–215

    Article  CAS  PubMed  Google Scholar 

  • Gerlai R (2010) High-throughput behavioral screens: the first step towards finding genes involved in vertebrate brain function using zebrafish. Molecules 15:2609–2622

    Article  CAS  PubMed  Google Scholar 

  • Gerlai R, Chatterjee D, Pereira T, Sawashima T, Krishnannair R (2009) Acute and chronic alcohol dose: Population differences in behavior and neurochemistry of zebrafish. Genes Brain Behav 8:586–599

    Article  CAS  PubMed  Google Scholar 

  • Grunwald DJ, Eisen JS (2002) Timeline: Headwaters of the zebrafish—emergence of a new model vertebrate. Nat Rev Genet 3:717–724

    Article  CAS  PubMed  Google Scholar 

  • Guryev V, Koudijs MJ, Berezikov E, Johnson SL, Plasterk RH, van Eeden FJ, Cuppen E (2006) Genetic variation in the zebrafish. Genome Res 16:491–497

    Article  CAS  PubMed  Google Scholar 

  • Hettinger JA, Liu X, Schwartz CE, Michaelis RC, Holden JJ (2008) A DRD1 haplotype is associated with risk for autism spectrum disorders in male-only affected sib-pair families. Am J Med Genet B Neuropsychiatr Genet 147B:628–636

    Article  CAS  PubMed  Google Scholar 

  • Ingham PW (2009) The power of the zebrafish for disease analysis. Hum Mol Genet 18:R107–R112

    Article  CAS  PubMed  Google Scholar 

  • Kalkstein S, Hurford I, Gur RC (2010) Neurocognition in schizophrenia. Curr Top Behav Neurosci 4:373–390

    Article  PubMed  Google Scholar 

  • Kurata K, Shibata R (1991) Effects of D1 and D2 antagonists on the transient increase of dopamine release by dopamine agonists by means of brain dialysis. Neurosci Lett 25(133):77–80

    Article  Google Scholar 

  • Li P, Shah S, Huang L, Carr AL, Gao Y, Thisse C, Thisse B, Li L (2007) Cloning and spatial and temporal expression of the zebrafish dopamine D1 receptor. Dev Dyn 236:1339–1346

    Article  CAS  PubMed  Google Scholar 

  • López-Patiño MA, Yu L, Cabral H, Zhdanova IV (2008) Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol Behav 93:160–171

    Article  PubMed  Google Scholar 

  • Mathur P, Guo S (2010) Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes. Neurobiol Dis 40:66–72

    Article  CAS  PubMed  Google Scholar 

  • Miller N, Gerlai R (2008) Oscillations in shoal cohesion in zebrafish (Danio rerio). Behav Brain Res 193:148–151

    Article  PubMed  Google Scholar 

  • Miller N, Gerlai R (2011) Shoaling in zebrafish: What we don’t know. Rev Neurosci 22:17–25

    PubMed  Google Scholar 

  • Mora-Ferrer C, Gangluff V (2002) D2-dopamine receptor blockade modulates temporal resolution in goldfish. Vis Neurosci 19:807–815

    Article  PubMed  Google Scholar 

  • Nguyen-Legros J, Simon A, Caillé I, Bloch B (1997) Immunocytochemical localization of dopamine D1 receptors in the retina of mammals. Vis Neurosci 14:545–551

    Article  CAS  PubMed  Google Scholar 

  • Noldus Information Technology bv (2004) EthoVision Reference Manual Version 3. Wageningen, The Netherlands, p 327

    Google Scholar 

  • Pan Y, Mo K, Razak Z, Westwood JT, Gerlai R (2011a) Chronic alcohol exposure induced gene expression changes in the zebrafish brain. Behav Brain Res 216:66–76

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Chaterjee D, Gerlai R (2011b) Strain dependent gene expression and neurochemical levels in the brain of Zebrafish: focus on a few alcohol related targets. Physiol Behav (in press)

    CAS  Google Scholar 

  • Reimers MJ, Hahn ME, Tanguay RL (2004) Two zebrafish alcohol dehydrogenases share common ancestry with mammalian class I, II, IV, and V alcohol dehydrogenase genes but have distinct functional characteristics. J Biol Chem 279:38303–38312

    Article  CAS  PubMed  Google Scholar 

  • Renier C, Faraco JH, Bourgin P, Motley T, Bonaventure P, Rosa F, Mignot E (2007) Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogen Genomics 17:237–253

    Article  CAS  Google Scholar 

  • Saverino C, Gerlai R (2008) The social zebrafish: Behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res 191:77–87

    Article  PubMed  Google Scholar 

  • Schreibman L (1988) Diagnostic features of autism. J Child Neurol 3(Suppl):S57–S64

    Article  PubMed  Google Scholar 

  • Sison M, Gerlai R (2011) Associative learning performance is impaired in zebrafish (Danio rerio) by the NMDA-R antagonist MK-801. Neurobiol Learn Mem 96:230–237

    Article  CAS  PubMed  Google Scholar 

  • Sison M, Cawker J, Buske C, Gerlai R (2006) Fishing for genes of vertebrate behavior: Zebra fish as an upcoming model system. Lab Anim 35:33–39

    Article  Google Scholar 

  • Spruijt BM, Hol T, Rousseau J (1992) Approach, avoidance, and contact behavior of individually recognized animals automatically quantified with an imaging technique. Physiol Behav 51:747–752

    Article  CAS  PubMed  Google Scholar 

  • Steketee JD (1998) Injection of SCH 23390 into the ventral tegmental area blocks the development of neurochemical but not behavioral sensitization to cocaine. Behav Pharmacol 9:69–76

    CAS  PubMed  Google Scholar 

  • Tager-Flusberg H (2010) The origins of social impairments in autism spectrum disorder: studies of infants at risk. Neural Netw 23:1072–1076

    Article  PubMed  Google Scholar 

  • Tropepe V, Sive HL (2003) Can zebrafish be used as a model to study the neurodevelopmental causes of autism? Genes Brain Behav 2:268–281

    Article  CAS  PubMed  Google Scholar 

  • Verhoeff NP (1999) Radiotracer imaging of dopaminergic transmission in neuropsychiatric disorders. Psychopharmacol 147:217–249

    Article  CAS  Google Scholar 

  • Volicer L (1981) GABA receptors in alcoholism. Ann Neurol 10:401–402

    Article  CAS  PubMed  Google Scholar 

  • Wahlsten D (1990) Insensitivity of the analysis of variance to heredity-environment interaction. Behav Brain Sci 13:109–116

    Article  Google Scholar 

  • Wise RA (1987) The role of reward pathways in the development of drug dependence. Pharmacol Ther 35:227–263

    Article  CAS  PubMed  Google Scholar 

  • Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225

    Article  CAS  PubMed  Google Scholar 

  • Witkovsky P (2004) Dopamine and retinal function. Doc Ophthalmol 108:17–40

    Article  PubMed  Google Scholar 

  • Young AB, Penney JB (1984) Neurochemical anatomy of movement disorders. Neurol Clin 2:417–433

    CAS  PubMed  Google Scholar 

  • Yung KK, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI (1995) Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neurosci 65:709–730

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by an NIH/NIAAA R01 (USA) grant awarded to Robert Gerlai, and an NSERC (CANADA) summer undergraduate research scholarship awarded to Tanya Scerbina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Gerlai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scerbina, T., Chatterjee, D. & Gerlai, R. Dopamine receptor antagonism disrupts social preference in zebrafish: a strain comparison study. Amino Acids 43, 2059–2072 (2012). https://doi.org/10.1007/s00726-012-1284-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1284-0

Keywords

Navigation