Skip to main content
Log in

Hypoxia-mediated prior induction of monocyte-expressed HSP72 and HSP32 provides protection to the disturbances to redox balance associated with human sub-maximal aerobic exercise

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

HSP72 is rapidly expressed in response to a variety of stressors in vitro and in vivo (including hypoxia). This project sought a hypoxic stimulus to elicit increases in HSP72 and HSP32 in attempts to confer protection to the sub-maximal aerobic exercise-induced disturbances to redox balance. Eight healthy recreationally active male subjects were exposed to five consecutive days of once-daily hypoxia (2,980 m, 75 min). Seven days prior to the hypoxic acclimation period, subjects performed 60 min of cycling on a cycle ergometer (exercise bout 1—EXB1), and this exercise bout was repeated 1 day post-cessation of the hypoxic period (exercise bout 2—EXB2). Blood samples were taken immediately pre- and post-exercise and 1, 4 and 8 h post-exercise for HSP72 and immediately pre, post and 1 h post-exercise for HSP32, TBARS and glutathione [reduced (GSH), oxidised (GSSG) and total (TGSH)], with additional blood samples obtained immediately pre-day 1 and post-day 5 of the hypoxic acclimation period for the same indices. Monocyte-expressed HSP32 and HSP72 were analysed by flow cytometry, with measures of oxidative stress accessed by commercially available kits. There were significant increases in HSP72 (P < 0.001), HSP32 (P = 0.03), GSSG (t = 9.5, P < 0.001) and TBARS (t = 5.6, P = 0.001) in response to the 5-day hypoxic intervention, whereas no significant changes were observed for GSH (P = 0.22) and TGSH (P = 0.25). Exercise-induced significant increases in HSP72 (P < 0.001) and HSP32 (P = 0.003) post-exercise in EXB1; this response was absent for HSP72 (P ≥ 0.79) and HSP32 (P ≥ 0.99) post-EXB2. The hypoxia-mediated increased bio-available HSP32 and HSP72 and favourable alterations in glutathione redox, prior to exercise commencing in EXB2 compared to EXB1, may acquiesce the disturbances to redox balance encountered during the second physiologically identical exercise bout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EXB1:

Exercise bout 1

EXB2:

Exercise bout 2

GSH:

Reduced glutathione

GSSG:

Oxidised glutathione

HSP:

Heat shock protein

HSP32:

Heme oxygenase

iHSP:

Intracellular heat shock protein

LT:

Lactate threshold

Maximal oxygen consumption:

\( \dot{V}{\text{O}}_{2\max } \)

mHSP72 :

Monocyte heat shock protein

PHER :

Prolonged hypoxic exposure at rest

PO:

Power output

RONS:

Reactive oxygen and/or nitrogen species

TGSH:

Total glutathione

WBGT:

Wet bulb globe temperature

W:

Watts

References

  • Ahn SG, Thiele DJ (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 17(4):516–528

    Article  PubMed  CAS  Google Scholar 

  • Anbarasi K, Kathirvel G, Vani G, Jayaraman G, Devi CSS (2006) Cigarette smoking induces heat shock protein 70 kDa expression and apoptosis in rat brain: modulation by bacoside A. Neuroscience 138(4):1127–1135

    Article  PubMed  CAS  Google Scholar 

  • Arsalani-Zadeh R, Ullah S, Khan S, MacFie J (2011) Oxidative stress in laparoscopic versus open abdominal surgery: a systematic review. J Surg Res 169(1):E59–E68. doi:10.1016/j.jss.2011.01.038

    Article  PubMed  CAS  Google Scholar 

  • Ascensao A, Ferreira R, Magalhaes J (2007) Exercise-induced cardioprotection—biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol 117(1):16–30. doi:10.1016/j.ijcard.2006.04.076

    Article  PubMed  Google Scholar 

  • Ascensao A, Rebelo A, Oliveira E, Marques F, Pereira L, Magalhaes J (2008) Biochemical impact of a soccer match—analysis of oxidative stress and muscle damage markers throughout recovery. Clin Biochem 41(10–11):841–851. doi:10.1016/j.clinbiochem.2008.04.008

    Article  PubMed  CAS  Google Scholar 

  • Ascensao A, Leite M, Rebelo AN, Magalhaes S, Magalhaes J (2011) Effects of cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J Sports Sci 29(3):217–225. doi:10.1080/02640414.2010.526132

    Article  PubMed  Google Scholar 

  • Bailey DM, Davies B, Young IS (2000) Evidence for reactive oxidant generation during acute physical exercise and normobaric hypoxia in man. Journal of Physiology-London 528P:45P-45P

  • Bloomer RJ, Goldfarb AH (2004) Anaerobic exercise and oxidative stress: A review. Can J Appl Physiol Rev Can Physiol Appl 29(3):245–263

    Article  CAS  Google Scholar 

  • Cheng B, Kuipers H, Snyder AC, Keizer HA, Jeukendrup A, Hesselink M (1992) A new approach for the determination of ventilatory and lactate thresholds. Int J Sports Med 13(7):518–522

    Article  PubMed  CAS  Google Scholar 

  • Essig DA, Borger DR, Jackson DA (1997) Induction of heme oxygenase-1 (HSP32) mRNA in skeletal muscle following contractions. Am J Physiol Cell Physiol 272(1):C59–C67

    CAS  Google Scholar 

  • Febbraio MA, Mesa JL, Chung J, Steensberg A, Keller C, Nielsen HB, Krustrup P, Ott P, Secher NH, Pedersen BK (2004) Glucose ingestion attenuates the exercise-induced increase in circulating heat shock protein 72 and heat shock protein 60 in humans. Cell Stress Chaperones 9(4):390–396

    Article  PubMed  CAS  Google Scholar 

  • Fehrenbach E, Passek F, Niess AM, Pohla H, Weinstock C, Dickhuth HH, Northoff H (2000) HSP expression in human leukocytes is modulated by endurance exercise. Med Sci Sports Exerc 32(3):592–600

    Article  PubMed  CAS  Google Scholar 

  • Fehrenbach E, Niess AM, Passek F, Sorichter S, Schwirtz A, Berg A, Dickhuth HH, Northoff H (2003) Influence of different types of exercise on the expression of haem oxygenase-1 in leukocytes. J Sports Sci 21(5):383–389. doi:10.1080/0264041031000071164

    Article  PubMed  CAS  Google Scholar 

  • Fisher-Wellman K, Bloomer R (2009) Acute exercise and oxidative stress: a 30 year history. Dynamic Medicine 8(1):1

    Article  PubMed  Google Scholar 

  • Gjovaag TF, Dahl HA (2006) Effect of training and detraining on the expression of heat shock proteins in m. triceps brachii of untrained males and females. Eur J Appl Physiol 98(3):310–322

    Article  PubMed  CAS  Google Scholar 

  • Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354. doi:10.1146/annurev.pharmtox.010909.105600

    Article  PubMed  CAS  Google Scholar 

  • Hillman AR, Vince RV, Taylor L, McNaughton L, Mitchell N, Siegler J (2011) Exercise-induced dehydration with and without environmental heat stress results in increased oxidative stress. Appl Physiol Nutr Metab 36(5):698–706. doi:10.1139/h11-080

    Article  PubMed  CAS  Google Scholar 

  • Ilhan N, Kamanli A, Ozmerdivenli R (2004) Variable effects of exercise intensity on reduced glutathione, thiobarbituric acid reactive substance levels, and glucose concentration. Arch Med Res 35(4):294–300

    Article  PubMed  CAS  Google Scholar 

  • Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 61(4):310–318. doi:10.1016/j.addr.2009.02.003

    Article  PubMed  CAS  Google Scholar 

  • Kiang JG, Tsen KT (2006) Biology of hypoxia. Chin J Physiol 49(5):223–233

    PubMed  CAS  Google Scholar 

  • Kukreja RC, Qian YZ, Kontos MC, Yang G, Loesser KE, Yoshida K, Hess ML (1994) Time-course of increase of heat-shock protein-70 messenger-RNA during ischemia–reperfusion and preconditioning in rat-heart. FASEB J 8(5):A857

    Google Scholar 

  • Kume M, Yamamoto Y, Yamagami K, Ishikawa Y, Uchinami H, Yamaoka Y (2000) Pharmacological hepatic preconditioning: involvement of 70-kDa heat shock proteins (HSP72 and HSP73) in ischaemic tolerance after intravenous administration of doxorubicin. Br J Surg 87(9):1168–1175. doi:10.1046/j.1365-2168.2000.01509.x

    Article  PubMed  CAS  Google Scholar 

  • Leeuwenburgh C, Ji LL (1995) Glutathione depletion in rested and exercised mice—biochemical consequence and adaptation. Arch Biochem Biophys 316(2):941–949

    Article  PubMed  CAS  Google Scholar 

  • Lepore DA, Hurley JV, Stewart AG, Morrison WA, Anderson RL (2000) Prior heat stress improves survival of ischemic–reperfused skeletal muscle in vivo. Muscle Nerve 23(12):1847–1855

    Article  PubMed  CAS  Google Scholar 

  • Lu PZ, Lai CY, Chan WH (2008) Caffeine induces cell death via activation of apoptotic signal and inactivation of survival signal in human osteoblasts. Int J Mol Sci 9(5):698–718. doi:10.3390/ijms9050698

    Article  PubMed  CAS  Google Scholar 

  • Madden LA, Sandstrom E, Lovell RJ, McNaughton L (2008a) Inducible heat shock protein 70 and its role in preconditioning and exercise. Amino Acids 33(4):511–516

    Article  Google Scholar 

  • Madden LA, Vince RV, Sandstrom ME, Taylor L, McNaughton L, Laden G (2008b) Microparticle-associated vascular adhesion molecule-I and tissue factor follow a circadian rhythm in healthy human subjects. Thromb Haemost 99(5):909–915

    PubMed  CAS  Google Scholar 

  • Magalhães FC, Amorim F, Passos R, Fonseca M, Oliveira K, Lima M, Guimarães J, Ferreira-Júnior J, Martini A, Lima N, Soares D, Oliveira E, Rodrigues L (2010) Heat and exercise acclimation increases intracellular levels of Hsp72 and inhibits exercise-induced increase in intracellular and plasma Hsp72 in humans. Cell Stress Chaperones 15(6):885–895. doi:10.1007/s12192-010-0197-7

  • Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70-kd heat-stress protein in a transgenic mouse increases the resistance of the heart to ischemic-injury. J Clin Investig 95(4):1446–1456

    Article  PubMed  CAS  Google Scholar 

  • McClung JP, Hasday JD, He JR, Montain SJ, Cheuvront SN, Sawka MN, Singh IS (2008) Exercise-heat acclimation in humans alters baseline levels and ex vivo heat inducibility of HSP72 and HSP90 in peripheral blood mononuclear cells. Am J Physiol Regul Integr Comp Physiol 294(1):R185–R191

    Article  PubMed  CAS  Google Scholar 

  • Morton JP, MacLaren DP, Cable NT, Bongers T, Griffiths RD, Campbell IT, Evans L, Kayani A, McArdle A, Drust B (2006) Time course and differential responses of the major heat shock protein families in human skeletal muscle following acute nondamaging treadmill exercise. J Appl Physiol 101(1):176–182

    Article  PubMed  CAS  Google Scholar 

  • Morton JP, Maclaren DPM, Cable NT, Campbell IT, Evans L, Kayani AC, Mcardle A, Drust B (2008) Trained men display increased basal heat shock protein content of skeletal muscle. Med Sci Sports Exerc 40(7):1255–1262. doi:10.1249/Mss.0b013e31816a7171

    Article  PubMed  CAS  Google Scholar 

  • Morton JP, Kayani A, Mcardle A, Drust B (2009) The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med 39(8):643–662

    Article  PubMed  Google Scholar 

  • Niess AM, Passek F, Lorenz I, Schneider EM, Dickhuth HH, Northoff H, Fehrenbach E (1999) Expression of the antioxidant stress protein heme oxygenase-1 (HO-1) in human leukocytes—acute and adaptational responses to endurance exercise. Free Radic Biol Med 26(1–2):184–192

    Article  PubMed  CAS  Google Scholar 

  • Nikolaidis MG, Jamurtas AZ (2009) Blood as a reactive species generator and redox status regulator during exercise. Arch Biochem Biophys 490(2):77–84. doi:10.1016/j.abb.2009.08.015

    Article  PubMed  CAS  Google Scholar 

  • Pasupathy S, Homer-Vanniasinkam S (2005) Surgical implications of ischemic preconditioning. Arch Surg 140(4):405–409. doi:10.1001/archsurg.140.4.405

    Article  PubMed  Google Scholar 

  • Peart DJ, McNaughton LR, Midgley AW, Taylor L, Towlson C, Madden LA, Vince RV (2011) Pre-exercise alkalosis attenuates the heat shock protein 72 response to a single-bout of anaerobic exercise. J Sci Med Sport 14(5):435–440. doi:10.1016/j.jsams.2011.03.006

    Article  PubMed  Google Scholar 

  • Pignatelli P, Tellan G, Marandola M, Carnevale R, Loffredo L, Schillizzi M, Proietti M, Violi F, Chirletti P, Delogu G (2011) Effect of l-carnitine on oxidative stress and platelet activation after major surgery. Acta Anaesthesiol Scand 55(8):1022–1028. doi:10.1111/j.1399-6576.2011.02487.x

    PubMed  CAS  Google Scholar 

  • Plumier JCL, Ross BM, Currie RW, Angelidis CE, Kazlaris H, Kollias G, Pagoulatos GN (1995) Transgenic mice expressing the human heat-shock protein-70 have improved postischemic myocardial recovery. J Clin Investig 95(4):1854–1860

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88(4):1243–1276. doi:10.1152/physrev.00031.2007

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol 102(6):2389–2397. doi:10.1152/japplphysiol.01202.2006

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Duarte J, Kavazis AN, Talbert EE (2010a) Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp Physiol 95(1):1–9. doi:10.1113/expphysiol.2009.050526

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Smuder AJ, Kavazis AN, Hudson MB (2010b) Experimental guidelines for studies designed to investigate the impact of antioxidant supplementation on exercise performance. Int J Sport Nutr Exerc Metab 20(1):2–14

    PubMed  CAS  Google Scholar 

  • Radak Z, Chung HY, Goto S (2008a) Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med 44(2):153–159. doi:10.1016/j.freeradbiomed.2007.01.029

    Article  PubMed  CAS  Google Scholar 

  • Radak Z, Chung HY, Koltai E, Taylor AW, Goto S (2008b) Exercise, oxidative stress and hormesis. Ageing Res Rev 7(1):34–42. doi:10.1016/j.arr.2007.04.004

    Article  PubMed  CAS  Google Scholar 

  • Rothfuss A, Radermacher P, Speit G (2001) Involvement of heme oxygenase-1 (HO-1) in the adaptive protection of human lymphocytes after hyperbaric oxygen (HBO) treatment. Carcinogenesis 22(12):1979–1985

    Article  PubMed  CAS  Google Scholar 

  • Sandstrom ME, Madden LA, Taylor L, Siegler JC, Lovell RJ, Midgley AW, Mcnaughton L (2009) Variation in basal heat shock protein 70 is correlated to core temperature in human subjects. Amino Acids 37(2):279

    Article  PubMed  Google Scholar 

  • Sawka MN, Burke L, Eichner R, Maughan R, Montain SJ, Stachenfeld N (2007) Exercise and fluid replacement. Med Sci Sports Exerc 39(2):377–390

    Article  PubMed  Google Scholar 

  • Selkirk GA, McLellan TM, Wright HE, Rhind SG (2009) Expression of intracellular cytokines, HSP72, and apoptosis in monocyte subsets during exertional heat stress in trained and untrained individuals. Am J Physio Regul Integr Comp Physiol 296(3):R575–R586. doi:10.1152/ajpregu.90683.2008

    Article  CAS  Google Scholar 

  • Sen CK, Atalay M, Hanninen O (1994a) Exercise-induced oxidative stress—glutathione supplementation and deficiency. J Appl Physiol 77(5):2177–2187

    PubMed  CAS  Google Scholar 

  • Sen CK, Rankinen T, Vaisanen S, Rauramaa R (1994b) Oxidative stress after human exercise—effect of N-acetylcysteine supplementation. J Appl Physiol 76(6):2570–2577

    PubMed  CAS  Google Scholar 

  • Shima Y, Kitaoka K, Yoshiki Y, Maruhashi Y, Tsuyama T, Tomita K (2008) Effect of heat shock preconditioning on ROS scavenging activity in rat skeletal muscle after downhill running. J Physiol Sci 58(5):341–348. doi:10.2170/physiolsci.RP004808

    Article  PubMed  Google Scholar 

  • Singleton KD, Ziegler TR, Luo M, Fernandez-Estivariz C, Wischmeyer PE (2004) Intravenous glutamine increases serum HSP 72 levels in both humans and rodents following systemic inflammation. In: 27th Annual conference on shock, Halifax, Canada, 05–08 June 2004, p 250

  • Taylor CT, Pouyssegur J (2007) Oxygen, hypoxia, and stress. Stress Responses Biol Med 1113:87–94

    CAS  Google Scholar 

  • Taylor L, Midgley A, Chrismas B, Madden L, Vince RV, McNaughton L (2010a) Daily quadratic trend in basal monocyte expressed HSP72 in healthy human subjects. Amino Acids 38(5):1483–1488

    Article  PubMed  CAS  Google Scholar 

  • Taylor L, Midgley A, Chrismas B, Madden L, Vince RV, Mcnaughton L (2010b) The effect of acute hypoxia on heat shock protein 72 expression and oxidative stress in vivo. Eur J Appl Physiol 109(5):849–855

    Article  PubMed  CAS  Google Scholar 

  • Taylor L, Midgley A, Chrismas B, Hillman A, Vince RV, Madden L, Mcnaughton L (2011a) Daily hypoxia increases basal monocyte HSP72 expression in healthy human subjects. Amino Acids 40(2):393–401

    Article  PubMed  CAS  Google Scholar 

  • Taylor L, Midgley A, Sandstroem ME, Chrismas B, McNaughton L (2011b) The effect of the hyperbaric environment on heat shock protein 72 expression in vivo. Res Sports Med (in press)

  • Tsuchiya M, Sato EF, Inoue M, Asada A (2008) Open abdominal surgery increases intraoperative oxidative stress: can it be prevented? Anesth Analg 107(6):1946–1952. doi:10.1213/ane.0b013e318187c96b

    Article  PubMed  CAS  Google Scholar 

  • Vince RV, McNaughton L, Taylor L, Midgley AW, Laden G, Madden LA (2009) Release of VCAM-1 associated endothelial microparticles following simulated SCUBA dives. Eur J Appl Physiol 105:507–513

    Article  PubMed  CAS  Google Scholar 

  • Vince RV, Oliver K, Midgley A, McNaughton L, Madden L (2010) In vitro heat shock of human monocytes results in a proportional increase of inducible Hsp70 expression according to the basal content. Amino Acids 38(5):1423–1428

    Article  PubMed  CAS  Google Scholar 

  • Vince RV, Midgley AW, Laden G, Madden LA (2011) The effect of hyperbaric oxygen preconditioning on heat shock protein 72 expression following in vitro stress in human monocytes. Cell Stress Chaperones 16(3):339–343. doi:10.1007/s12192-010-0246-2

    Article  PubMed  CAS  Google Scholar 

  • Vissing K, Bayer ML, Overgaard K, Schjerling P, Raastad T (2009) Heat shock protein translocation and expression response is attenuated in response to repeated eccentric exercise. Acta Physiol 196(3):283–293. doi:10.1111/j.1748-1716.2008.01940.x

    Article  CAS  Google Scholar 

  • Yamada P, Amorim F, Moseley P, Schneider S (2008) Heat shock protein 72 response to exercise in humans. Sports Med 38(9):715–733

    Article  PubMed  Google Scholar 

  • Yogaratnam JZ, Laden G, Guvendik L, Cowen M, Cale A, Griffin S (2007) Can hyperbaric oxygen be used as adjunctive heart failure therapy through the induction of endogenous heat shock proteins? Adv Therapy 24(1):106–118

    Article  CAS  Google Scholar 

  • Yogaratnam JZ, Laden G, Guvendik L, Cowen M, Cale A, Griffin S (2010) Hyperbaric oxygen preconditioning improves myocardial function, reduces length of intensive care stay, and limits complications post coronary artery bypass graft surgery. Cardiovascu Revasc Med 11(1):8–19. doi:10.1016/j.carrev.2009.03.004

Download references

Acknowledgments

No external funding was utilised in the completion of this project. The technical and laboratory assistance/support of James Bray and Chris Towlson (laboratory technicians—University of Hull, Department of Sport and Exercise Science) was invaluable in the completion of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, L., Hillman, A.R., Midgley, A.W. et al. Hypoxia-mediated prior induction of monocyte-expressed HSP72 and HSP32 provides protection to the disturbances to redox balance associated with human sub-maximal aerobic exercise. Amino Acids 43, 1933–1944 (2012). https://doi.org/10.1007/s00726-012-1265-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1265-3

Keywords

Navigation