Skip to main content
Log in

Synthesis of biologically stable gold nanoparticles using imidazolium-based amino acid ionic liquids

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

A novel double-step reduction procedure for the synthesis of gold nanoparticles (AuNPs) using amino acid ionic liquids has been employed. 1-Dodecyl-3-methyl imidazolium tryptophan ([C12mim]Trp) and 1-ethyl-3-methyl imidazolium tryptophan ([C2mim]Trp) were used for this synthesis. The synthesized AuNPs were characterized by UV–vis spectroscopy, transmission electron microscopy and dynamic light scattering. The behavior of these AuNPs were also probed in a biological media. It was proven that AuNPs synthesized at [C12mim]Trp have more stability than AuNPs synthesized at [C2mim]Trp due to the longer alkyl chain of the imidazolium moiety. The solubility test shows that the resultant AuNPs have a hydrophilic nature. Finally, it was seen that due to the presence of a biomolecule, namely Trp, in the structure of AuNPs protecting shell, higher stability and biocompatibility was achieved in the biological media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Absalan G, Akhond M, Sheikhian L (2010) Partitioning of acidic, basic and neutral amino acids into imidazolium-based ionic liquids. Amino Acids 39:167–174

    Article  PubMed  CAS  Google Scholar 

  • Agasti S, Rana S, Park MH, Kim CK, You CC, Rotello VM (2010) Nanoparticles for detection and diagnosis. Adv Drug Delivery Rev 62:316–328

    Article  CAS  Google Scholar 

  • Berthod A, Angel MJR, Broch SC (2008) Ionic liquids in separation techniques. J Chromatogr A 1184:6–18

    Article  PubMed  CAS  Google Scholar 

  • Bhargava SK, Booth JM, Agrawal S, Coloe P, Kar G (2005) Gold nanoparticle formation during bromoaurate reduction by amino acids. Langmuir 21:5949–5956

    Article  PubMed  CAS  Google Scholar 

  • Cho C-W, Pham TPT, Jeon Y-C, Vijayaraghavan K, Choe W-S, Yun Y-S (2007) Toxicity of imidazolium salt with anion bromide to a phytoplankton selenastrum capricornutum: effect of alkyl-chain length. Chemosphere 69:1003–1007

    Article  PubMed  CAS  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  PubMed  CAS  Google Scholar 

  • De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225–4241

    Article  CAS  Google Scholar 

  • Dobbs W, Heinrich B, Bourgogne C, Donnio B, Terazzi E, Bonnet M-E, Stock F, Erbacher P, Bolcato-Bellemin A-L, Douce L (2009) Mesomorphic imidazolium salts: new vectors for efficient siRNA transfection. J Am Chem Soc 131:13338–13346

    Article  PubMed  CAS  Google Scholar 

  • Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127:2398–2399

    Article  PubMed  CAS  Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Delivery Rev 60:1307–1315

    Article  CAS  Google Scholar 

  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294

    Article  CAS  Google Scholar 

  • Itoh H, Naka K, Chujo Y (2004) Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc 126:3026–3027

    Article  PubMed  CAS  Google Scholar 

  • Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticle target cancer. Nano Today 2:18–29

    Article  Google Scholar 

  • Kasture M, Sastry M, Prasad BLV (2010) Halide ion controlled shape dependent gold nanoparticle synthesis with tryptophan as reducing agent: enhanced fluorescent properties and white light emission. Chem Phys Lett 484:271–275

    Article  CAS  Google Scholar 

  • Katz E, Willner I (2004) Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108

    Article  CAS  Google Scholar 

  • Kumar RA, Papaı¨conomou N, Lee J-M, Salminen J, Clark DS, Prausnitz JM (2009) In vitro cytotoxicities of ionic liquids: effect of cation rings, functional groups, and anions periodicals. Inc Environ Toxicol 24:388–395

    Article  CAS  Google Scholar 

  • Li Z, Liu Z, Zhang J, Han B, Du J, Gao Y, Jiang T (2005) Synthesis of single-crystal gold nanosheets of large size in ionic liquids. J Phys Chem B 109:14445–14448

    Article  PubMed  CAS  Google Scholar 

  • Maleki N, Safavi A, Tajabadi F (2006) High-performance carbon composite electrode based on anionic liquid as a binder. Anal Chem 78:3820–3826

    Article  PubMed  CAS  Google Scholar 

  • Malhotra SV, Kumar V (2010) A profile of the in vitro anti-tumor activity of imidazolium-based ionic liquids. Bioorg Med Chem Lett 20:581–585

    Article  PubMed  CAS  Google Scholar 

  • Mandal S, Selvakannan P, Phadtare S, Pasricha R, Sastry M (2002) Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid. Proc Indian Acad Sci 114:513–520

    Article  CAS  Google Scholar 

  • Marsh KN, Deev A, Wu AC-T, Tran E, Klamt A (2002) Room temperature ionic liquids as replacements for conventional solvents—a review. Korean J Chem Eng 19:357–362

    Article  CAS  Google Scholar 

  • Midoux P, Pichon C, Yaouanc J–J, Jaffrès P-A (2009) Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol 157:166–178

    Article  PubMed  CAS  Google Scholar 

  • Miranda OR, Creran B, Rotello VM (2010) Array-based sensing with nanoparticles:‘chemical noses’ for sensing biomolecules and cell surfaces. Curr Opin Chem Biol 14:1–9

    Article  Google Scholar 

  • Murawala P, Phadnis SM, Bhonde RR, Prasad BLV (2009) In situ synthesis of water dispersible bovine serum albumin capped gold and silver nanoparticles and their cytocompatibility studies. Coll Surf B: Biointerfaces 73:224–228

    Article  CAS  Google Scholar 

  • Ohno H, Fukumoto K (2007) Amino acid ionic liquids. Acc Chem Res 40:1122–1129

    Article  PubMed  CAS  Google Scholar 

  • P′erez-Juste J, Pastoriza-Santos I, Liz-Marz′an LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901

    Article  Google Scholar 

  • Peng Y, Li G, Li J, Yu S (2009) Convenient synthesis of various ionic liquids from onium hydroxides and ammonium salts. Tetrahedron Lett 50:4286–4288

    Article  CAS  Google Scholar 

  • Ren L, Meng L, Lu Q, Fei Z, Dysonb PJ (2008) Fabrication of gold nano- and microstructures in ionic liquids—a remarkable anion effect. J Colloid Interface Sci 323:260–266

    Article  PubMed  CAS  Google Scholar 

  • Romero A, Santos A, Tojob J, Rodr′ıguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151:268–273

    Article  PubMed  CAS  Google Scholar 

  • Safavi A, Zeinali S (2010) Synthesis of highly stable gold nanoparticles using conventional and geminal ionic liquids. Coll Surf A: physicochem Eng Aspects 362:121–126

    Article  CAS  Google Scholar 

  • Selvakannan P, Mandal S, Phadtare S, Pasricha R, Sastry M (2003) Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible. Langmuir 19:3545–3549

    Article  CAS  Google Scholar 

  • Selvakannan P, Mandal S, Phadtare S, Gole A, Pasricha R, Adyanthaya SD, Sastry M (2004a) Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J Colloid Interface Sci 269:97–102

    Article  PubMed  CAS  Google Scholar 

  • Selvakannan P, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB, Sastry M (2004b) Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface. Langmuir 20:7825–7836

    Article  PubMed  CAS  Google Scholar 

  • Shan C, Li F, Yuan F, Yang G, Niu L, Zhang Q (2008) Size-controlled synthesis of monodispersed gold nanoparticles stabilized by polyelectrolyte-functionalized ionic liquid. Nanotechnology 19:285601–285607

    Article  PubMed  Google Scholar 

  • Shao Y, Jin Y, Dong S (2004) Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem Comm (9):1104–1105

  • Singh P, Kumaric K, Katyal A, Kalrad R, Chandra R (2009) Synthesis and characterization of silver and gold nanoparticles in ionic liquid. Spec Acta Part A 73:218–220

    Article  Google Scholar 

  • Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090

    Article  CAS  Google Scholar 

  • Wasserscheid P, Welton T (eds) (2008) Ionic liquids in synthesis, 2nd edn. Wiley, Weinheim

    Google Scholar 

  • Wu Y, Zhang T (2009) Structural and electronic properties of amino acid based ionic liquids: A theoretical study. J Phys Chem A 113:12995–13003

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103

    Article  CAS  Google Scholar 

  • You C–C, Verma A, Rotello VM (2006) Engineering the nanoparticle–biomacromolecule interface. Soft Matter 2:190–204

    Article  CAS  Google Scholar 

  • Zhang H, Cui H (2009) Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir 25:2604–2612

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Chen X, Lan J, You J, Chen L (2009) Synthesis and biological applications of imidazolium-based polymerized ionic liquid as a gene delivery vector. Chem Biol Drug Des 74:282–288

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Shiraz University research council and Shiraz University nanotechnology research institute for the support of this work.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsaneh Safavi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safavi, A., Zeinali, S. & Yazdani, M. Synthesis of biologically stable gold nanoparticles using imidazolium-based amino acid ionic liquids. Amino Acids 43, 1323–1330 (2012). https://doi.org/10.1007/s00726-011-1205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1205-7

Keywords

Navigation