Skip to main content

Advertisement

Log in

Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The neonatal small intestine is susceptible to damage by endotoxin, but effective methods for prevention and treatment are lacking. N-acetylcysteine (NAC) is a widely used precursor of l-cysteine for animal cells and plays an important role in protecting cells against oxidative stress. This study was conducted with the lipopolysaccharide (LPS)-challenged piglet model to determine the effects of NAC on intestinal function. Eighteen piglets were randomly allocated into control, LPS and LPS + NAC groups. The control and LPS groups were fed a corn- and soybean meal-based diet, and the LPS + NAC group was fed the basal diet +500 mg/kg NAC. On days 10, 13 and 20 of the trial, the LPS and LPS + NAC groups received intraperitoneal administration of LPS (100 μg/kg BW), whereas the control piglets received saline. On day 20 of the trial, d-xylose (0.1 g/kg BW) was orally administrated to all piglets 2 h after LPS or saline injection, and blood samples were collected 1 h thereafter. One hour blood xylose test was used to measure intestinal absorption capacity and mucosal integrity, and diamine oxidase (DAO) was used as a marker of intestinal injury. On day 21 of the trial, pigs were killed to obtain the intestinal mucosa. Compared to the control, LPS challenge reduced (P < 0.05) the concentrations of d-xylose (a marker of intestinal absorption) in plasma, activities of DAO in the jejunal mucosa, the ratio of villus height to crypt depth in the jejunal mucosa, RNA/DNA and protein/DNA in the jejunal and ileal mucosae, while increasing (P < 0.05) DAO activity in plasma and caspase-3 expression in the intestinal mucosa. The adverse effects of LPS were partially ameliorated (P < 0.05) by NAC supplementation. Moreover, NAC prevented the LPS-induced decrease in claudin-1 and occludin expression in the jejunal and ileal mucosae. Collectively, these results indicate that dietary NAC supplementation alleviates the mucosal damage and improves the absorptive function of the small intestine in LPS-challenged piglets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

BW:

Body weight

DAO:

Diamine oxidase

HSP 70:

Heat shock protein 70

LPS:

Lipopolysaccharide

NAC:

N-acetylcysteine

PBS:

Phosphate-buffered saline

SD:

Standard deviation of the mean

References

  • Blachier F, Boutry C, Bos C et al (2009) Metabolism and functions of l-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 90:814S–821S

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Lancha AH Jr, Boutry C, Tome C (2010) Alimentary proteins, amino acids and cholesterolemia. Amino Acids 38:15–22

    Article  PubMed  CAS  Google Scholar 

  • Boudreau F, Lussier CR, Mongrain S, Darsigny M, Drouin JL, Doyon G, Suh ER, Beaulieu JF, Rivard N, Perreault N (2007) Loss of cathepsin L activity promotes claudin-1 overexpression and intestinal neoplasia. FASEB J 21:3853–3865

    Article  PubMed  CAS  Google Scholar 

  • De Flora S, Izzotti A, D’Agostini F, Cesarone CF (1991) Antioxidant activity and other mechanisms of thiols involved in chemoprevention of mutation and cancer. Amer J Med 91(3C):122S–130S

    Article  PubMed  Google Scholar 

  • Deng D, Yin YL, Chu WY, Yao K, Li TJ, Huang RL, Liu ZQ, Zhang JS, Wu G (2009) Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem 20:544–552

    Article  PubMed  CAS  Google Scholar 

  • Fasina YO, Moran ET, Ashwell CM, Conner DE, Leslie M, Mckee SR (2007) Effect of dietary gelatin supplementation on the expression of selected enterocyte genes, intestinal development and early chick performance. Int J Poult Sci 6:944–951

    Article  Google Scholar 

  • Geng MM, Li TJ, Kong XF, Song XY, Chu WY, Huang RL et al (2011) Reduced expression of intestinal N-acetylglutamate synthase in suckling piglets: a novel molecular mechanism for arginine as a nutritionally essential amino acid for neonates. Amino Acids 40:1513–1522

    Google Scholar 

  • Haeney MR, Culank LS, Montgomery RD, Sammons HG (1978) Evaluation of xylose absorption as measured in blood and urine: a one-hour blood xylose screening test in malabsorption. Gastroenterology 75:393–400

    PubMed  CAS  Google Scholar 

  • Hagen TM, Wierzbicka GT, Sillau AH, Bowman BB, Jones DP (1990) Bioavailability of dietary glutathione: Effect on plasma concentration. Am J Physiol 259:G524–G529

    PubMed  CAS  Google Scholar 

  • Hampson DJ (1986) Alterations in piglet small intestinal structure at weaning. Res Vet Sci 40:32–40

    PubMed  CAS  Google Scholar 

  • Haynes TE, Li P, Li X, Shimotori K, Sato H, Flynn NE, Wang J, Knabe DA, Wu G (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142

    Article  PubMed  CAS  Google Scholar 

  • Hosoda N, Nishi M, Nakagawa M, Hiramatsu Y, Hioki K, Yamamoto M (1989) Structural and functional alterations in the gut of parenterally or enterally fed rats. J Surg Res 47:129–133

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Wang L, Ding BY, Liu YL, Zhu HL, Liu J, Li YT, Wu X, Yin YL, Wu GY (2010) Dietary α-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids 39:555–564

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Yao K, Wang L, Ding BY, Fu DB, Liu YL, Zhu HL, Liu J, Li YT, Kang P, Yin YL, Wu GY (2011a) Effects of a-ketoglutarate on energy status in the intestinal mucosa of weaned piglets chronically challenged with lipopolysaccharide. Br J Nutr 106:357–363

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Wang L, Ding BY, Liu YL, Zhu HL, Liu J, Li YT, Kang P, Yin YL, Wu G (2011b) Alpha-ketoglutarate and intestinal function. Front Biosci 16:1186–1196

    Article  PubMed  CAS  Google Scholar 

  • Howe KL, Reardon C, Wang A, Nazli A, McKay DM (2005) Transforming growth factor-β regulation of epithelial tight junction proteins enhances barrier function and blocks enterohemorrhagic escherichia coli O157:h7-induced increased permeability. Am J Pathol 167:1587–1597

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Zhang LL, Hou YQ, Ding BY, Zhu HL, Liu YL, Yang ZG, Zhang W (2010) Effects of N-acetylcysteine on growth performance and plasma biochemical indices of lipopolysaccharide challenged piglets. Chin J Anim Nutr 22(4):1007–1011

    CAS  Google Scholar 

  • Iji PA, Saki A, Tivey DR (2001) Intestinal development and body growth of broiler chicks on diets supplemented with non-starch polysaccharides. Anim Feed Sci Technol 89:175–188

    Article  CAS  Google Scholar 

  • Jeurissen SHM, Lewis F, van der Klis JD, Mroz Z, Rebel JMJ, ter Huurne AAHM (2002) Parameters and techniques to determine intestinal health of poultry as constituted by immunity, integrity and functionality. Curr Issues Intest Microbiol 3:1–14

    PubMed  CAS  Google Scholar 

  • Jobgen W, Fu WJ, Gao H, Li P, Meininger CJ, Smith SB, Spencer TE, Wu G (2009) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37:187–198

    Article  PubMed  CAS  Google Scholar 

  • Knight KR, MacPhadyen K, Lepore DA, Kuwata N, Eadie PA, O’Brien BM (1991) Enhancement of ischaemic rabbit skin flap survival with the antioxidant and free-radical scavenger N-acetylcysteine. Clin Sci 81:31–36

    PubMed  CAS  Google Scholar 

  • Li JY, Yu Y, Hao J, Jin H, Xu HJ (1996) Determination of diamine oxidase activity in intestinal tissue and blood using spectrophotometry. Amino Acids and Biotic Resources 18:28–30

    Google Scholar 

  • Li J, Quan N, Bray TM (2002a) Supplementation of N-acetylcysteine normalizes lipopolysaccharide-induced nuclear factor kappaB activation and proinflammatory cytokine production during early rehabilitation of protein malnourished mice. J Nutr 132:3286–3292

    PubMed  CAS  Google Scholar 

  • Li JY, Yu Y, Hu S, Sun D, Yao YM (2002b) Preventive effect of glutamine on intestinal barrier dysfunction induced by severe trauma. World J Gastroenterol 8:168–171

    PubMed  CAS  Google Scholar 

  • Li P, Yin YL, Li D, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Li P, Kim SW, Li XL, Datta S, Pond WG, Wu G (2009) Dietary supplementation with cholesterol and docosahexaenoic acid affects concentrations of amino acids in tissues of young pigs. Amino Acids 37:709–716

    Article  PubMed  Google Scholar 

  • Li FN, Yin YL, Tan BE, Kong XF, Wu G (2011a) Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 41:1185–1193

    Google Scholar 

  • Li XL, Rezaei R, Li P, Wu G (2011b) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Google Scholar 

  • Liu YL, Huang JJ, Hou YQ, Zhu HL, Zhao SJ, Ding BY, Yin YL, Yi GF, Shi JY, Fan W (2008) Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br J Nutr 100:552–560

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Hou YQ, Ding BY, Liu YL, Zhu HL, Wang L, Li YT (2010) Effects of α-ketoglutaric acid on protein synthesis and antioxidative capacity in jejunal mucosa of weaned pigs chronically challenged with lipopolysaccharide. Chin J Anim Sci 46:35–38

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Luk GD, Bayless TM, Baylin SB (1980) Diamine oxidase (histaminase). A circulating marker for rat intestinal mucosal maturation and integrity. J Clin Invest 66:66–70

    Article  PubMed  CAS  Google Scholar 

  • Luk GD, Bayless TM, Baylin SB (1983) Plasma postheparin diamine oxidase. Sensitive provocative test for quantitating length of acute intestinal mucosal injury in the rat. J Clin Invest 71:1308–1315

    Article  PubMed  CAS  Google Scholar 

  • Luna LG (1968) Manual of histologic staining methods of the Armed Forces Institute of Pathology. 3rd edn. McGraw-Hill Book Company, NY, pp 258

    Google Scholar 

  • Mansoori B, Nodeh H, Modirsanei M, Rahbari S, Aparnak P (2009) d-Xylose absorption test: A tool for the assessment of the effect of anticoccidials on the intestinal absorptive capacity of broilers during experimental coccidiosis. Anim Feed Sci Tech 148:301–308

    Article  CAS  Google Scholar 

  • Montagne L, Pluske JR, Hampson DJ (2003) A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim Feed Sci Tech 108:95–117

    Article  Google Scholar 

  • Munro HN, Fleck A (1969) Analysis of tissues and body fluids for nitrogenous constituents. In: Munro HN (ed) Mammalian protein metabolism. Academic press, NY, pp 465–483

    Google Scholar 

  • Nofrarías M, Manzanilla EG, Pujols J, Gibert X, Majó N, Segalés J, Gasa J (2006) Effects of spray-dried porcine plasma and plant extracts on intestinal morphology and on leukocyte cell subsets of weaned pigs. J Anim Sci 84:2735–2742

    Article  PubMed  Google Scholar 

  • Prasad AS, DeMouchelle E, Koniuchi D (1972) A simple fluorimetric method for the determination of RNA and DNA in tissue. J Lab Clin Med 80:598–601

    PubMed  CAS  Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213–C1228

    Article  PubMed  CAS  Google Scholar 

  • Sepponen K, Poso AR (2006) The inducible form of heat shock protein 70 in the serum, colon and small intestine of the pig: comparison to conventional stress markers. Vet J 171:519–524

    Article  PubMed  CAS  Google Scholar 

  • Sheth P, Delos Santos N, Seth A, LaRusso NF, Rao RK (2007) Lipopolysaccharide disrupts tight junctions in cholangiocyte monolayers by a c-Src-, TLR4-, and LBP-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 293:G308–G318

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Liu ZQ, Li XG, Xu HJ, Kong XF, Huang RL, Tang WJ, Shinzato I, Smith SB, Wu G (2009a) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Li XG, Kong XF, Huang RL, Ruan Z, Yao K, Deng ZY, Xie MY, Shinzato I, Yin YL, Wu G (2009b) Dietary l-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids 37:323–331

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Kong XF, Li P, Li XL, Gao HJ, Li XG, Huang RL, Wu G (2010) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38:1227–1235

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M (2000) The structure and function of claudins, cell adhesion molecules at tight junctions. Ann NY Acad Sci 915:129–135

    Article  PubMed  CAS  Google Scholar 

  • Uni Z, Ganot S, Sklan D (1998) Posthatch development of mucosal function in the broiler small intestine. Poult Sci 77:75–82

    PubMed  CAS  Google Scholar 

  • Vincenzini MT, Favilli F, Iantomasi T (1988) Glutathione-mediated transport across intestinal brush-border membranes. Biochim Biophys Acta 942:107–114

    Article  PubMed  CAS  Google Scholar 

  • Wang JJ, Chen LX, Li DF, Yin YL, Wang XQ, Li P, Dangott LJ, Hu WX, Wu G (2008) Intrauterine growth restriction affects the proteomes of the small intestine, liver and skeletal muscle in newborn pigs. J Nutr 138:60–66

    PubMed  CAS  Google Scholar 

  • Wang XQ, Ou DY, Yin JD, Wu G, Wang JJ (2009) Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets. Amino Acids 37:209–218

    Article  PubMed  Google Scholar 

  • Wei JW, Carroll RJ, Harden KK, Wu G (2011) Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids. doi:10.1007/s00726-011-0924-0

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    PubMed  CAS  Google Scholar 

  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    PubMed  CAS  Google Scholar 

  • Wu X, Ruan Z, Gao YL, Yin YL, Zhou XH, Wang L et al (2010) Dietary supplementation with l-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet. Amino Acids 39:831–839

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Knabe DA et al (2011) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Google Scholar 

  • Yao K, Yin YL, Li XL, Xi PB, Wang JJ, Lei J et al (2011) Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids. doi:10.1007/s00726-011-1060-6

  • Yin YL, Huang RL, Li TJ, Ruan Z, Xie MY, Deng ZY et al (2010) Amino acid metabolism in the portal-drained viscera of young pigs: effects of dietary supplementation with chitosan and pea hull. Amino Acids 39:1581–1587

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by the National Natural Science Foundation of China (Grant No. 30871801), National Natural Science Foundation of China (No. 30972213), Wuhan Disciplines Leaders Project (Grant No. 200951830554), the Program for Innovative Research Groups of Hubei Provincial Natural Science Foundation (Grant No. 2007ABC009) and National Research Initiative Competitive Grants from the Animal Growth and Nutrient Utilization Program (2008-35206-18764) of the USDA National Institute of Food and Agriculture and Texas AgriLife Research (H-82000).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqing Hou or Guoyao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, Y., Wang, L., Zhang, W. et al. Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43, 1233–1242 (2012). https://doi.org/10.1007/s00726-011-1191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1191-9

Keywords

Navigation