Amino Acids

, Volume 45, Issue 1, pp 25–39 | Cite as

Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions

  • Mario Delgado
  • Doina GaneaEmail author
Invited Review


Vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide/neurotransmitter, is widely distributed in both the central and peripheral nervous system. VIP is released by both neurons and immune cells. Various cell types, including immune cells, express VIP receptors. VIP has pleiotropic effects as a neurotransmitter, immune regulator, vasodilator and secretagogue. This review is focused on VIP production and effects on immune cells, VIP receptor signaling as related to immune functions, and the involvement of VIP in inflammatory and autoimmune disorders. The review addresses present clinical use of VIP and future therapeutic directions.


Vasoactive intestinal peptide Autoimmunity Inflammation Neuroinflammation Neuropeptides/neurotransmitters 



This work was supported by the following grants: NIH/NIAID RO1AI47325 (DG) and Spanish Ministry of Health (MD).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abad C, Martinez C et al (2003) Therapeutic effects of vasoactive intestinal peptide in the trinitrobenzene sulfonic acid mice model of Crohn’s disease. Gastroenterology 124(4):961–971CrossRefPubMedGoogle Scholar
  2. Abad C, Juarranz Y et al (2005) cDNA array analysis of cytokines, chemokines, and receptors involved in the development of TNBS-induced colitis: homeostatic role of VIP. Inflamm Bowel Dis 11(7):674–684CrossRefPubMedGoogle Scholar
  3. Abad C, Tan YV et al (2010) Vasoactive intestinal peptide loss leads to impaired CNS parenchymal T-cell infiltration and resistance to experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 107(45):19555–19560CrossRefPubMedGoogle Scholar
  4. Anderson P, Gonzalez-Rey E (2010) Vasoactive intestinal peptide induces cell cycle arrest and regulatory functions in human T cells at multiple levels. Mol Cell Biol 30(10):2537–2551CrossRefPubMedGoogle Scholar
  5. Arnalich F, de Miguel E et al (1994) Neuropeptides and interleukin-6 in human joint inflammation relationship between intraarticular substance P and interleukin-6 concentrations. Neurosci Lett 170(2):251–254CrossRefPubMedGoogle Scholar
  6. Arranz A, Juarranz Y et al (2008) VIP balances innate and adaptive immune responses induced by specific stimulation of TLR2 and TLR4. Peptides 29(6):948–956CrossRefPubMedGoogle Scholar
  7. Bangale Y, Karle S et al (2003) VIPase autoantibodies in Fas-defective mice and patients with autoimmune disease. FASEB J 17(6):628–635CrossRefPubMedGoogle Scholar
  8. Bellinger DL, Lorton D et al (1997) Vasoactive intestinal polypeptide (VIP) innervation of rat spleen, thymus, and lymph nodes. Peptides 18(8):1139–1149CrossRefPubMedGoogle Scholar
  9. Bovenschen HJ, van de Kerkhof PC et al (2011) Foxp3+ regulatory T Cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J Invest DermatolGoogle Scholar
  10. Brandtzaeg P, Oktedalen O et al (1989) Elevated VIP and endotoxin plasma levels in human gram-negative septic shock. Regul Pept 24(1):37–44CrossRefPubMedGoogle Scholar
  11. Buckner JH (2010) Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol 10(12):849–859CrossRefPubMedGoogle Scholar
  12. Camelo S, Lajavardi L et al (2009) Protective effect of intravitreal injection of vasoactive intestinal peptide-loaded liposomes on experimental autoimmune uveoretinitis. J Ocul Pharmacol Ther 25(1):9–21CrossRefPubMedGoogle Scholar
  13. Chen G, Hao J et al (2008) The therapeutic effect of vasoactive intestinal peptide on experimental arthritis is associated with CD4+ CD25+ T regulatory cells. Scand J Immunol 68(6):572–578CrossRefPubMedGoogle Scholar
  14. Chorny A, Delgado M (2008) Neuropeptides rescue mice from lethal sepsis by down-regulating secretion of the late-acting inflammatory mediator high mobility group box 1. Am J Pathol 172(5):1297–1307CrossRefPubMedGoogle Scholar
  15. Chorny A, Gonzalez-Rey E et al (2005) Vasoactive intestinal peptide induces regulatory dendritic cells with therapeutic effects on autoimmune disorders. Proc Natl Acad Sci USA 102(38):13562–13567CrossRefPubMedGoogle Scholar
  16. Chorny A, Gonzalez-Rey E et al (2006) Vasoactive intestinal peptide induces regulatory dendritic cells that prevent acute graft-versus-host disease while maintaining the graft-versus-tumor response. Blood 107(9):3787–3794CrossRefPubMedGoogle Scholar
  17. Delgado M (2002) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the MEKK1/MEK4/JNK signaling pathway in endotoxin-activated microglia. Biochem Biophys Res Commun 293(2):771–776CrossRefPubMedGoogle Scholar
  18. Delgado M, Ganea D (2000a) Inhibition of IFN-gamma-induced janus kinase-1-STAT1 activation in macrophages by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. J Immunol 165(6):3051–3057PubMedGoogle Scholar
  19. Delgado M, Ganea D (2000b) Vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide inhibit the MEKK1/MEK4/JNK signaling pathway in LPS-stimulated macrophages. J Neuroimmunol 110(1–2):97–105CrossRefPubMedGoogle Scholar
  20. Delgado M, Ganea D (2001a) Cutting edge: is vasoactive intestinal peptide a type 2 cytokine? J Immunol 166(5):2907–2912PubMedGoogle Scholar
  21. Delgado M, Ganea D (2001b) Inhibition of endotoxin-induced macrophage chemokine production by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide in vitro and in vivo. J Immunol 167(2):966–975PubMedGoogle Scholar
  22. Delgado M, Ganea D (2001c) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit nuclear factor-kappa B-dependent gene activation at multiple levels in the human monocytic cell line THP-1. J Biol Chem 276(1):369–380CrossRefPubMedGoogle Scholar
  23. Delgado M, Ganea D (2003a) Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson’s disease by blocking microglial activation. FASEB J 17(8):944–946PubMedGoogle Scholar
  24. Delgado M, Ganea D (2003b) Vasoactive intestinal peptide inhibits IL-8 production in human monocytes. Biochem Biophys Res Commun 301(4):825–832CrossRefPubMedGoogle Scholar
  25. Delgado M, Ganea D (2003c) Vasoactive intestinal peptide prevents activated microglia-induced neurodegeneration under inflammatory conditions: potential therapeutic role in brain trauma. FASEB J 17(13):1922–1924PubMedGoogle Scholar
  26. Delgado M, Munoz-Elias EJ et al (1998) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit tumor necrosis factor alpha transcriptional activation by regulating nuclear factor-kB and cAMP response element-binding protein/c-Jun. J Biol Chem 273(47):31427–31436CrossRefPubMedGoogle Scholar
  27. Delgado M, Martinez C et al (1999a) Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activation polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNF-alpha and IL-6. J Immunol 162(2):1200–1205PubMedGoogle Scholar
  28. Delgado M, Sun W et al (1999b) VIP and PACAP differentially regulate the costimulatory activity of resting and activated macrophages through the modulation of B7.1 and B7.2 expression. J Immunol 163(8):4213–4223PubMedGoogle Scholar
  29. Delgado M, Abad C et al (2001) Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat Med 7(5):563–568CrossRefPubMedGoogle Scholar
  30. Delgado M, Jonakait GM et al (2002a) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit chemokine production in activated microglia. Glia 39(2):148–161CrossRefPubMedGoogle Scholar
  31. Delgado M, Leceta J et al (2002b) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide promote in vivo generation of memory Th2 cells. FASEB J 16(13):1844–1846PubMedGoogle Scholar
  32. Delgado M, Gonzalez-Rey E et al (2004a) VIP/PACAP preferentially attract Th2 effectors through differential regulation of chemokine production by dendritic cells. Faseb J 18(12):1453–1455PubMedGoogle Scholar
  33. Delgado M, Pozo D et al (2004b) The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev 56(2):249–290CrossRefPubMedGoogle Scholar
  34. Delgado M, Reduta A et al (2004c) VIP/PACAP oppositely affects immature and mature dendritic cell expression of CD80/CD86 and the stimulatory activity for CD4(+) T cells. J Leukoc Biol 75(6):1122–1130CrossRefPubMedGoogle Scholar
  35. Delgado M, Gonzalez-Rey E et al (2005) The neuropeptide vasoactive intestinal peptide generates tolerogenic dendritic cells. J Immunol 175(11):7311–7324PubMedGoogle Scholar
  36. Delgado M, Robledo G et al (2008a) Genetic association of vasoactive intestinal peptide receptor with rheumatoid arthritis: altered expression and signal in immune cells. Arthr Rheum 58(4):1010–1019CrossRefGoogle Scholar
  37. Delgado M, Toscano MG et al (2008b) In vivo delivery of lentiviral vectors expressing vasoactive intestinal peptide complementary DNA as gene therapy for collagen-induced arthritis. Arthr Rheum 58(4):1026–1037CrossRefGoogle Scholar
  38. Delgado M, Varela N et al (2008c) Vasoactive intestinal peptide protects against beta-amyloid-induced neurodegeneration by inhibiting microglia activation at multiple levels. Glia 56(10):1091–1103CrossRefPubMedGoogle Scholar
  39. Delgado M, Anderson P et al (2009) Neuropeptides kill African trypanosomes by targeting intracellular compartments and inducing autophagic-like cell death. Cell Death Differ 16(3):406–416CrossRefPubMedGoogle Scholar
  40. Deng S, Xi Y et al (2010) Regulatory effect of vasoactive intestinal peptide on the balance of Treg and Th17 in collagen-induced arthritis. Cell Immunol 265(2):105–110CrossRefPubMedGoogle Scholar
  41. Dickinson T, Mitchell R et al (1999) The role of VIP/PACAP receptor subtypes in spinal somatosensory processing in rats with an experimental peripheral mononeuropathy. Neuropharmacology 38(1):167–180CrossRefPubMedGoogle Scholar
  42. Dickson L, Finlayson K (2009) VPAC and PAC receptors: from ligands to function. Pharmacol Ther 121(3):294–316CrossRefPubMedGoogle Scholar
  43. Dinsmore WW, Gingell C et al (1999) Treating men with predominantly nonpsychogenic erectile dysfunction with intracavernosal vasoactive intestinal polypeptide and phentolamine mesylate in a novel auto-injector system: a multicentre double-blind placebo-controlled study. BJU Int 83(3):274–279CrossRefPubMedGoogle Scholar
  44. El Karim IA, Linden GJ et al (2008) Antimicrobial activity of neuropeptides against a range of micro-organisms from skin, oral, respiratory and gastrointestinal tract sites. J Neuroimmunol 200(1–2):11–16CrossRefPubMedGoogle Scholar
  45. Fahrenkrug J (2010) VIP and PACAP. Results Probl Cell Differ 50:221–234PubMedGoogle Scholar
  46. Favrais G, Couvineau A et al (2007) Involvement of VIP and PACAP in neonatal brain lesions generated by a combined excitotoxic/inflammatory challenge. Peptides 28(9):1727–1737CrossRefPubMedGoogle Scholar
  47. Fernandez-Martin A, Gonzalez-Rey E et al (2006) VIP prevents experimental multiple sclerosis by downregulating both inflammatory and autoimmune components of the disease. Ann NY Acad Sci 1070:276–281CrossRefPubMedGoogle Scholar
  48. Ferraccioli G, Zizzo G (2011) The potential role of Th17 in mediating the transition from acute to chronic autoimmune inflammation: rheumatoid arthritis as a model. Discov Med 11(60):413–424PubMedGoogle Scholar
  49. Foster N, Lea SR et al (2007) Pivotal advance: vasoactive intestinal peptide inhibits up-regulation of human monocyte TLR2 and TLR4 by LPS and differentiation of monocytes to macrophages. J Leukoc Biol 81(4):893–903CrossRefPubMedGoogle Scholar
  50. Fraccaroli L, Alfieri J et al (2009) VIP modulates the pro-inflammatory maternal response, inducing tolerance to trophoblast cells. Br J Pharmacol 156(1):116–126CrossRefPubMedGoogle Scholar
  51. Fry DC, Madison VS et al (1989) Solution structure of an analogue of vasoactive intestinal peptide as determined by two-dimensional NMR and circular dichroism spectroscopies and constrained molecular dynamics. Biochemistry 28(6):2399–2409CrossRefPubMedGoogle Scholar
  52. Fujino S, Andoh A et al (2003) Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52(1):65–70CrossRefPubMedGoogle Scholar
  53. Ganea D, Rodriguez R et al (2003) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: players in innate and adaptive immunity. Cell Mol Biol (Noisy-le-grand) 49(2):127–142Google Scholar
  54. Ganea D, Gonzalez-Rey E et al (2006) A novel mechanism for immunosuppression: from neuropeptides to regulatory T cells. J Neuroimmune Pharmacol 1(4):400–409CrossRefPubMedGoogle Scholar
  55. Goetzl EJ, Voice JK et al (2001) Enhanced delayed-type hypersensitivity and diminished immediate-type hypersensitivity in mice lacking the inducible VPAC(2) receptor for vasoactive intestinal peptide. Proc Natl Acad Sci USA 98(24):13854–13859CrossRefPubMedGoogle Scholar
  56. Gomariz RP, Arranz A et al (2005) Time-course expression of Toll-like receptors 2 and 4 in inflammatory bowel disease and homeostatic effect of VIP. J Leukoc Biol 78(2):491–502CrossRefPubMedGoogle Scholar
  57. Gonzalez-Rey E, Delgado M (2006) Therapeutic treatment of experimental colitis with regulatory dendritic cells generated with vasoactive intestinal peptide. Gastroenterology 131(6):1799–1811CrossRefPubMedGoogle Scholar
  58. Gonzalez-Rey E, Delgado M (2007) Anti-inflammatory neuropeptide receptors: new therapeutic targets for immune disorders? Trends Pharmacol Sci 28(9):482–491CrossRefPubMedGoogle Scholar
  59. Gonzalez-Rey E, Chorny A et al (2006a) Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and CD8 regulatory T cells. Blood 107(9):3632–3638CrossRefPubMedGoogle Scholar
  60. Gonzalez-Rey E, Fernandez-Martin A et al (2006b) Vasoactive intestinal peptide induces CD4+, CD25+ T regulatory cells with therapeutic effect in collagen-induced arthritis. Arthr Rheum 54(3):864–876CrossRefGoogle Scholar
  61. Gonzalez-Rey E, Fernandez-Martin A et al (2006c) Therapeutic effect of vasoactive intestinal peptide on experimental autoimmune encephalomyelitis: down-regulation of inflammatory and autoimmune responses. Am J Pathol 168(4):1179–1188CrossRefPubMedGoogle Scholar
  62. Gonzalez-Rey E, Anderson P et al (2007) Emerging roles of vasoactive intestinal peptide: a new approach for autoimmune therapy. Ann Rheum Dis 66(Suppl 3):iii70–iii76CrossRefPubMedGoogle Scholar
  63. Gonzalez-Rey E, Ganea D et al (2010) Neuropeptides: keeping the balance between pathogen immunity and immune tolerance. Curr Opin Pharmacol 10(4):473–481CrossRefPubMedGoogle Scholar
  64. Gozes I, Divinsky I et al (2003) From vasoactive intestinal peptide (VIP) through activity-dependent neuroprotective protein (ADNP) to NAP: a view of neuroprotection and cell division. J Mol Neurosci 20(3):315–322CrossRefPubMedGoogle Scholar
  65. Guerrero J, Prieto J et al (1981) Interaction of vasoactive intestinal peptide with human blood mononuclear cells. Mol Cell Endocrinol 21(2):151–160CrossRefPubMedGoogle Scholar
  66. Gutierrez-Canas I, Juarranz Y et al (2006) VIP down-regulates TLR4 expression and TLR4-mediated chemokine production in human rheumatoid synovial fibroblasts. Rheumatology (Oxford) 45(5):527–532CrossRefGoogle Scholar
  67. Hamidi SA, Szema AM et al (2006) Clues to VIP function from knockout mice. Ann NY Acad Sci 1070:5–9CrossRefPubMedGoogle Scholar
  68. Harmar AJ, Arimura A et al (1998) International union of pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 50(2):265–270PubMedGoogle Scholar
  69. Henning RJ, Sawmiller DR (2001) Vasoactive intestinal peptide: cardiovascular effects. Cardiovasc Res 49(1):27–37CrossRefPubMedGoogle Scholar
  70. Herrera JL, Gonzalez-Rey E et al (2009) Toll-like receptor stimulation differentially regulates vasoactive intestinal peptide type 2 receptor in macrophages. J Cell Mol Med 13(9B):3209–3217CrossRefPubMedGoogle Scholar
  71. Hill JM (2007) Vasoactive intestinal peptide in neurodevelopmental disorders: therapeutic potential. Curr Pharm Des 13(11):1079–1089CrossRefPubMedGoogle Scholar
  72. Jiang X, Jing H et al (2002) VIP and PACAP down-regulate CXCL10 (IP-10) and up-regulate CCL22 (MDC) in spleen cells. J Neuroimmunol 133(1–2):81–94CrossRefPubMedGoogle Scholar
  73. Jimeno R, Gomariz RP et al (2010) New insights into the role of VIP on the ratio of T-cell subsets during the development of autoimmune diabetes. Immunol Cell Biol 88(7):734–745CrossRefPubMedGoogle Scholar
  74. Jones KB, Mollano AV et al (2004) Bone and brain: a review of neural, hormonal, and musculoskeletal connections. Iowa Orthop J 24:123–132PubMedGoogle Scholar
  75. Juarranz Y, Gutierrez-Canas I et al (2008) Differential expression of vasoactive intestinal peptide and its functional receptors in human osteoarthritic and rheumatoid synovial fibroblasts. Arthr Rheum 58(4):1086–1095CrossRefGoogle Scholar
  76. Kebir H, Kreymborg K et al (2007) Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med 13(10):1173–1175CrossRefPubMedGoogle Scholar
  77. Keino H, Kezuka T et al (2004) Prevention of experimental autoimmune uveoretinitis by vasoactive intestinal peptide. Arch Ophthalmol 122(8):1179–1184CrossRefPubMedGoogle Scholar
  78. Kim WK, Kan Y et al (2000) Vasoactive intestinal peptide and pituitary adenylyl cyclase-activating polypeptide inhibit tumor necrosis factor-alpha production in injured spinal cord and in activated microglia via a cAMP-dependent pathway. J Neurosci 20(10):3622–3630PubMedGoogle Scholar
  79. Kojima M, Ito T et al (2005) VIP attenuation of the severity of experimental pancreatitis is due to VPAC1 receptor-mediated inhibition of cytokine production. Pancreas 30(1):62–70PubMedGoogle Scholar
  80. Korkmaz OT, Tuncel N et al (2010) Vasoactive intestinal peptide (VIP) treatment of Parkinsonian rats increases thalamic gamma-aminobutyric acid (GABA) levels and alters the release of nerve growth factor (NGF) by mast cells. J Mol Neurosci 41(2):278–287CrossRefPubMedGoogle Scholar
  81. Langer I, Robberecht P (2007) Molecular mechanisms involved in vasoactive intestinal peptide receptor activation and regulation: current knowledge, similarities to and differences from the A family of G-protein-coupled receptors. Biochem Soc Trans 35(Pt 4):724–728PubMedGoogle Scholar
  82. Lauenstein HD, Quarcoo D et al (2010) Pituitary adenylate cyclase-activating peptide receptor 1 mediates anti-inflammatory effects in allergic airway inflammation in mice. Clin Exp Allergy 41(4):592–601CrossRefPubMedGoogle Scholar
  83. Leuchte HH, Baezner C et al (2008) Inhalation of vasoactive intestinal peptide in pulmonary hypertension. Eur Respir J 32(5):1289–1294CrossRefPubMedGoogle Scholar
  84. Li JM, Southerland L et al (2011) Absence of vasoactive intestinal peptide expression in hematopoietic cells enhances Th1 polarization and antiviral immunity in mice. J Immunol 187(2):1057–1065CrossRefPubMedGoogle Scholar
  85. Liu L, Yen JH et al (2007) A novel VIP signaling pathway in T cells cAMP– > protein tyrosine phosphatase (SHP-2?)– > JAK2/STAT4– > Th1 differentiation. Peptides 28(9):1814–1824CrossRefPubMedGoogle Scholar
  86. Lodde BM, Mineshiba F et al (2006) Effect of human vasoactive intestinal peptide gene transfer in a murine model of Sjogren’s syndrome. Ann Rheum Dis 65(2):195–200CrossRefPubMedGoogle Scholar
  87. Luo Q, Wang Y et al (2009) Vasoactive intestinal peptide attenuates concanavalin A-mediated liver injury. Eur J Pharmacol 607(1–3):226–233CrossRefPubMedGoogle Scholar
  88. Maldonado RA, von Andrian UH (2010) How tolerogenic dendritic cells induce regulatory T cells. Adv Immunol 108:111–165CrossRefPubMedGoogle Scholar
  89. Martinez C, Delgado M et al (1998) VIP and PACAP enhance IL-6 release and mRNA levels in resting peritoneal macrophages: in vitro and in vivo studies. J Neuroimmunol 85(2):155–167CrossRefPubMedGoogle Scholar
  90. Martinez C, Abad C et al (2002) Anti-inflammatory role in septic shock of pituitary adenylate cyclase-activating polypeptide receptor. Proc Natl Acad Sci USA 99(2):1053–1058CrossRefPubMedGoogle Scholar
  91. Masmoudi-Kouki O, Gandolfo P et al (2007) Role of PACAP and VIP in astroglial functions. Peptides 28(9):1753–1760CrossRefPubMedGoogle Scholar
  92. Mazzocchi G, Rebuffat P et al (1998) Vasoactive intestinal peptide stimulates rat adrenal glucocorticoid secretion, through an ACTH receptor-dependent activation of the adenylate cyclase signaling pathway. Horm Metab Res 30(5):241–243CrossRefPubMedGoogle Scholar
  93. Moody TW, Ito T et al (2011) VIP and PACAP: recent insights into their functions/roles in physiology and disease from molecular and genetic studies. Curr Opin Endocrinol Diabetes Obes 18(1):61–67CrossRefPubMedGoogle Scholar
  94. O’Dorisio MS, Hermina NS et al (1981) Vasoactive intestinal polypeptide modulation of lymphocyte adenylate cyclase. J Immunol 127(6):2551–2554PubMedGoogle Scholar
  95. Onoue S, Misaka S et al (2010) Inhalable powder formulation of vasoactive intestinal peptide derivative, [R15, 20, 21, L17]-VIP-GRR, attenuated neutrophilic airway inflammation in cigarette smoke-exposed rats. Eur J Pharm Sci 41(3–4):508–514CrossRefPubMedGoogle Scholar
  96. Paladini F, Cocco E et al (2008) A functional polymorphism of the vasoactive intestinal peptide receptor 1 gene correlates with the presence of HLA-B*2705 in Sardinia. Genes Immun 9(8):659–667CrossRefPubMedGoogle Scholar
  97. Palermo MS, Vermeulen ME et al (1996) Human antibody-dependent cellular cytotoxicity mediated by interferon gamma-activated neutrophils is impaired by vasoactive intestinal peptide. J Neuroimmunol 69(1–2):123–128CrossRefPubMedGoogle Scholar
  98. Passemard S, El Ghouzzi V et al (2011a) VIP blockade leads to microcephaly in mice via disruption of Mcph1-Chk1 signaling. J Clin InvestGoogle Scholar
  99. Passemard S, Sokolowska P et al (2011b) VIP-induced neuroprotection of the developing brain. Curr Pharm Des 17(10):1036–1039CrossRefPubMedGoogle Scholar
  100. Pedrera C, Lucas M et al (1994) Receptor-independent mechanisms are involved in the priming of neutrophil’s oxidase by vasoactive intestinal peptide. Regul Pept 54(2–3):505–511CrossRefPubMedGoogle Scholar
  101. Petkov V, Mosgoeller W et al (2003) Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J Clin Invest 111(9):1339–1346PubMedGoogle Scholar
  102. Piggins HD, Cutler DJ (2003) The roles of vasoactive intestinal polypeptide in the mammalian circadian clock. J Endocrinol 177(1):7–15CrossRefPubMedGoogle Scholar
  103. Pozo D, Anderson P et al (2009) Induction of alloantigen-specific human T regulatory cells by vasoactive intestinal peptide. J Immunol 183(7):4346–4359CrossRefPubMedGoogle Scholar
  104. Prasse A, Zissel G et al (2010) Inhaled vasoactive intestinal peptide exerts immunoregulatory effects in sarcoidosis. Am J Respir Crit Care Med 182(4):540–548CrossRefPubMedGoogle Scholar
  105. Reynolds AD, Stone DK et al (2010) Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J Immunol 184(5):2261–2271CrossRefPubMedGoogle Scholar
  106. Said SI, Mutt V (1970) Polypeptide with broad biological activity: isolation from small intestine. Science 169(951):1217–1218CrossRefPubMedGoogle Scholar
  107. Said SI, Rosenberg RN (1976) Vasoactive intestinal polypeptide: abundant immunoreactivity in neural cell lines and normal nervous tissue. Science 192(4242):907–908CrossRefPubMedGoogle Scholar
  108. Sakaguchi S, Miyara M et al (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10(7):490–500CrossRefPubMedGoogle Scholar
  109. Samarasinghe AE, Hoselton SA et al (2011) The absence of VPAC2 leads to aberrant antibody production in Aspergillus fumigatus sensitized and challenged mice. Peptides 32(1):131–137CrossRefPubMedGoogle Scholar
  110. Sharma V, Delgado M et al (2006) Granzyme B, a new player in activation-induced cell death, is down-regulated by vasoactive intestinal peptide in Th2 but not Th1 effectors. J Immunol 176(1):97–110PubMedGoogle Scholar
  111. Smalley SG, Barrow PA et al (2009) Immunomodulation of innate immune responses by vasoactive intestinal peptide (VIP): its therapeutic potential in inflammatory disease. Clin Exp Immunol 157(2):225–234CrossRefPubMedGoogle Scholar
  112. Snoek SA, Borensztajn KS et al (2010) Neuropeptide receptors in intestinal disease: physiology and therapeutic potential. Curr Pharm Des 16(9):1091–1105CrossRefPubMedGoogle Scholar
  113. Sun W, Hong J et al (2006) Altered expression of vasoactive intestinal peptide receptors in T lymphocytes and aberrant Th1 immunity in multiple sclerosis. Int Immunol 18(12):1691–1700CrossRefPubMedGoogle Scholar
  114. Szema AM, Hamidi SA et al (2006) Mice lacking the VIP gene show airway hyperresponsiveness and airway inflammation, partially reversible by VIP. Am J Physiol Lung Cell Mol Physiol 291(5):L880–L886CrossRefPubMedGoogle Scholar
  115. Tan YV, Abad C et al (2009) Pituitary adenylyl cyclase-activating polypeptide is an intrinsic regulator of Treg abundance and protects against experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 106(6):2012–2017CrossRefPubMedGoogle Scholar
  116. Toscano MG, Delgado M et al (2010) Dendritic cells transduced with lentiviral vectors expressing VIP differentiate into VIP-secreting tolerogenic-like DCs. Mol Ther 18(5):1035–1045CrossRefPubMedGoogle Scholar
  117. Vaudry D, Falluel-Morel A et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61(3):283–357CrossRefPubMedGoogle Scholar
  118. Voice JK, Grinninger C et al (2003) Roles of vasoactive intestinal peptide (VIP) in the expression of different immune phenotypes by wild-type mice and T cell-targeted type II VIP receptor transgenic mice. J Immunol 170(1):308–314PubMedGoogle Scholar
  119. Voice J, Donnelly S et al (2004) c-Maf and JunB mediation of Th2 differentiation induced by the type 2 G protein-coupled receptor (VPAC2) for vasoactive intestinal peptide. J Immunol 172(12):7289–7296PubMedGoogle Scholar
  120. Vosko AM, Schroeder A et al (2007) Vasoactive intestinal peptide and the mammalian circadian system. Gen Comp Endocrinol 152(2–3):165–175CrossRefPubMedGoogle Scholar
  121. Wang HY, Jiang XM et al (2000) The neuropeptides VIP and PACAP inhibit IL-2 transcription by decreasing c-Jun and increasing JunB expression in T cells. J Neuroimmunol 104(1):68–78CrossRefPubMedGoogle Scholar
  122. Winzell MS, Ahren B (2007) Role of VIP and PACAP in islet function. Peptides 28(9):1805–1813CrossRefPubMedGoogle Scholar
  123. Yadav M, Rosenbaum J et al (2008) Cutting edge: vasoactive intestinal peptide (VIP) induces differentiation of Th17 cells with a distinctive cytokine profile. J Immunol 180(5):2772–2776PubMedGoogle Scholar
  124. Yu R, Zhang H et al (2011) Anti-hyperglycemic, antioxidant and anti-inflammatory effects of VIP and a VPAC1 agonist on streptozotocin-induced diabetic mice. Peptides 32(2):216–222CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Instituto de Parasitologia y Biomedicina, IPBLN-CSICGranadaSpain
  2. 2.Department of Microbiology and ImmunologyTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations