Amino Acids

, Volume 44, Issue 1, pp 103–109 | Cite as

eIF5A isoforms and cancer: two brothers for two functions?

  • M. CaragliaEmail author
  • M. H. Park
  • E. C. Wolff
  • M. Marra
  • A. Abbruzzese
Invited Review


Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the unusual amino acid hypusine [N ε-(4-amino-2-hydroxybutyl)lysine]. The role of hypusine formation in the eIF5A protein in the regulation of cell proliferation and apoptosis is addressed in the present review. Moreover, vertebrates carry two genes that encode two eIF5A isoforms, eIF5A-1 and eIF5A-2, which, in humans, are 84% identical. However, the biological functions of these two isoforms may be significantly different. In fact, eIF5A-1 is demonstrable in most cells of different histogenesis, whereas eIF5A-2 protein is detectable only in certain human cancer cells or tissues, suggesting its role as a potential oncogene. In this review we focus our attention on the involvement of eIF5A-1 in the triggering of an apoptotic program and in the regulation of cell proliferation. In addition, the potential oncogenic role and prognostic significance of eIF5A-2 in the prediction of the survival of cancer patients is described. eIF5A-1 and/or the eIF5A-2 isoform may serve as a new molecular diagnostic or prognostic marker or as a molecular target for anti-cancer therapy.


eIF5A isoform Hypusine Tissue transglutaminase Cancer Apoptosis Prognostic markers Hypusine synthesis inhibitors 



This paper is dedicated to the memory of Dr. J.E. Folk (Oct 29, 1925–Dec 27, 2010). In addition to his pioneering work on the mechanism of transglutaminase, he and his colleagues discovered the hypusine modification pathway. The research was supported in part by the Intramural Research Program of National Institute of Dental and Craniofacial Research (NIDCR).


  1. Abbruzzese A, Liguori V, Park MH (1988) Deoxyhypusine hydroxylase. Adv Exp Med Biol 250:459–466PubMedCrossRefGoogle Scholar
  2. Abbruzzese A, Park MH, Folk JE (1986) Deoxyhypusine hydroxylase from rat testis: partial purification and characterization. J Biol Chem 261:3085–3089PubMedGoogle Scholar
  3. Balabanov S, Gontarewicz A, Ziegler P, Hartmann U, Kammer W, Copland M, Brassat U, Priemer M, Hauber I, Wilhelm T, Schwarz G, Kanz L, Bokemeyer C, Hauber J, Holyoake TL, Nordheim A, Bru¨mmendorf TH (2007) Hypusination of eukaryotic initiation factor 5A(eIF5A): a novel therapeutic target in BCR-ABL–positive leukemias identified by a proteomics approach. Blood 109(4):1701–1711PubMedCrossRefGoogle Scholar
  4. Beninati S, Nicolini L, Jakus J, Passeggio A, Abbruzzese A (1995) Identification of a substrate site for transglutaminases on the human protein synthesis initiation factor 5. Biochem J 305:725–728PubMedGoogle Scholar
  5. Beninati S, Gentile V, Caraglia M, Lentini A, Tagliaferri P, Abbruzzese A (1998) Tissue transglutaminase expression affects hypusine metabolism in BALB/c 3T3 cells. FEBS Lett 437:34–38PubMedCrossRefGoogle Scholar
  6. Boon K, Caron HN, van Asperen R, Valentijn L, Hermus MC, van Sluis P, Roobeek IIW, Voute PA, Schwab M, Versteeg R (2001) N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J 20:1383–1393PubMedCrossRefGoogle Scholar
  7. Caraglia M, Passeggio A, Beninati S, Leardi A, Nicolini L, Improta S, Pinto A, Bianco AR, Tagliaferri P, Abbruzzese A (1997) Interferon alpha2 recombinant and epidermal growth factor modulate proliferation and hypusine synthesis in human epidermoid cancer KB cells. Biochem J 324:737–741PubMedGoogle Scholar
  8. Caraglia M, Budillon A, Vitale G, Lupoli G, Tagliaferri P, Abbruzzese A (2000) Modulation of molecular mechanisms involved in protein synthesis machinery as a new tool for the control of cell proliferation. Eur J Biochem 267:3919–3936PubMedCrossRefGoogle Scholar
  9. Caraglia M, Marra M, Giuberti G, D’Alessandro AM, Baldi A, Tassone P, Venuta S, Tagliaferri P, Abbruzzese A (2003) The eukaryotic initiation factor 5A is involved in the regulation of proliferation and apoptosis induced by interferon-alpha and EGF in human cancer cells. J Biochem (Tokyo) 133:757–765CrossRefGoogle Scholar
  10. Chen KY, Liu AY (1997) Biochemistry and function of hypusine formation on eukaryotic initiation factor 5A. Biol Signals 6:1105–1109CrossRefGoogle Scholar
  11. Chen ZP, Yan YP, Ding QJ, Knapp S, Potenza JA, Schugar HJ, Chen KY (1996) Effects of inhibitors of deoxyhypusine synthase on the differentiation of mouse neuroblastoma and erythroleukemia cells. Cancer Lett 105:233–239PubMedCrossRefGoogle Scholar
  12. Chen G, Gharib TG, Thomas DG, Huang CC, Misek DE, Kuick RD, Giordano TJ, Iannettoni MD, Orringer MB, Hanash SM, Beer DG (2003) Proteomic analysis of eIF5A in lung adenocarcinomas. Proteomics 3:496–504PubMedCrossRefGoogle Scholar
  13. Chen W, Luo JH, Hua WF, Zhou FJ, Lin MC, Kung HF et al (2009) Overexpression of EIF-5A2 is an independent predictor of outcome in patients of urothelial carcinoma of the bladder treated with radical cystectomy. Cancer Epidemiol Biomarkers Prev 18:400–408PubMedCrossRefGoogle Scholar
  14. Clement PM, Hanauske-Abel HM, Wolff EC, Kleinman HK, Park MH (2002) The antifungal drug ciclopirox inhibits deoxyhypusine and proline hydroxylation, endothelial cell growth and angiogenesis in vitro. Int J Cancer 100:491–498PubMedCrossRefGoogle Scholar
  15. Clement PMJ, Henderson CA, Jenkins ZA, Smit-McBride Z, Wolff EC, Hershey JWB, Park MH, Johansson HE (2003) Identification and characterization of eukaryotic initiation factor 5A–2. Eur J Biochem 147:4254–4263CrossRefGoogle Scholar
  16. Clement PMJ, Johansson HE, Wolff EC, Park MH (2006) Differential expression of eIF5A–1 and eIF5A–2 in human cancer cells. FEBS J. 273:1102–1114PubMedCrossRefGoogle Scholar
  17. Coller HA, Grandori C, Tamayo P, Colbert T, Lander ES, Eisenman RN, Golub TR (2000) Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci USA 97:3260–3265PubMedCrossRefGoogle Scholar
  18. Cracchiolo BM, Heller DS, Clement PM, Wolff EC, Park MH, Hanauske-Abel HM (2004) Eukaryotic initiation factor 5A-1 (eIF5A-1) as a diagnostic marker for aberrant proliferation in intraepithelial neoplasia of the vulva. Gynecol Oncol 94:217–222PubMedCrossRefGoogle Scholar
  19. Gregio AP, Cano VP, Avaca JS, Valentini SR, Zanelli CF (2009) eIF5A has a function in the elongation step of translation in yeast. Biochem Biophys Res Commun 380:785–790PubMedCrossRefGoogle Scholar
  20. Guan XY, Sham JS, Tang TC, Fang Y, Huo KK, Yang JM (2001) Isolation of a novel candidate oncogene within a frequently amplified region at 3q26 in ovarian cancer. Cancer Res 61:3806–3809PubMedGoogle Scholar
  21. Guan XY, Fung JM, Ma NF, Lau SH, Tai LS, Xie D, Zhang Y, Hu L, Wu QL, Fang Y, Sham JS (2004) Oncogenic role of eIF-5A2 in the development of ovarian cancer. Cancer Res 64:4197–4200PubMedCrossRefGoogle Scholar
  22. Hanauske-Abel HM, Park MH, Hanauske AR, Popowicz AM, Lalande M, Folk JE (1994) Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine hydroxylation. Biochim Biophys Acta 1221:115–124PubMedCrossRefGoogle Scholar
  23. Hanauske-Abel HM, Heller D, Wolff EC, Hameed M, Clement PMJ, Park MH et al (2002) Eukaryotic translation initiation factor 5A, an emerging target for cytostatic compounds, localizes to proliferative regions in human tissue. Cancer Epidemiol Biomarkers Prev 11:1145sGoogle Scholar
  24. He LR, Zhao HY, Li BK, Liu YH, Liu MZ, Guan XY, Bian XW, Zeng YX, Xie D (2011) Overexpression of eIF5A–2 is an adverse prognostic marker of survival in stage I non-small-cell lung cancer patients. Int J Cancer 129(1):143–150PubMedCrossRefGoogle Scholar
  25. Jao DLE, Chen KY (2002) Subcellular localization of the hypusine-containing eukaryotic initiation factor 5A by immunofluorescent staining and green fluorescent protein tagging. J Cell Biochem 86:590–600PubMedCrossRefGoogle Scholar
  26. Jenkins ZA, Haag PG, Johansson HE (2001) Human EIF5A2 on chromosome 3q25–q27, is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression. Genomics 71:101–109PubMedCrossRefGoogle Scholar
  27. Jin BF, He K, Wang HX, Wang J, Zhou T, Lan Y, Hu MR, Wei KH, Yang SC, Shen BF, Zhang XM (2003) Proteomic analysis of ubiquitin–proteasome effects: insight into the function of eukaryotic initiation factor 5A. Oncogene 22:4819–4830PubMedCrossRefGoogle Scholar
  28. Kettunen E, el-Rifai W, Bjorkqvist AM, Wolff H, Karjalainen A, Anttila S, Mattson K, Husgafvel-Pursiainen K, Knuutila S (2000) A broad amplification pattern at 3q in squamous cell lung cancer: a fluorescence in situ hybridization study. Cancer Genet Cytogenet 117:66–70PubMedCrossRefGoogle Scholar
  29. Lam FF, Jankova L, Dent OF, Molloy MP, Kwun SY, Clarke C, Chapuis P, Robertson G, Beale P, Clarke S, Bokey EL, Chan C (2010) Identification of distinctive protein expression patterns in colorectal adenoma. Proteomics Clin Appl 4:60–70CrossRefGoogle Scholar
  30. Lee NP, Cheung ST, Poon RT, Fan ST, Luk JM (2007) Genomic and proteomic biomarkers for diagnosis and prognosis of hepatocellular carcinoma. Biomarkers Med 1:273–284CrossRefGoogle Scholar
  31. Lee SB, Park JH, Kaevel JK, Sramkova M, Weigert R, Park MH (2009) The effect of hypusine modification on the intracellular localization of eIF5A. Biochem Biophys Res Commun 383:497–502PubMedCrossRefGoogle Scholar
  32. Lee NP, Tsang FH, Shek FH, Mao M, Dai H, Zhang C, Dong S, Guan X, Poon RTP, Luk JM (2010) Prognostic significance and therapeutic potential of eukaryotic translation initiation factor 5A (eIF5A) in hepatocellular carcinoma. Int J Cancer 127:968–976PubMedCrossRefGoogle Scholar
  33. Li AL, Li HY, Jin BF, Ye QN, Zhou T, Yu XD, Pan X, Man JH, He K, Yu M, Hu MR, Wang J, Yang SC, Shen BF, Zhang XM (2004) A novel eIF5A complex functions as a regulator of p53 and p53-dependent apoptosis. J Biol Chem 279:49251–49258PubMedCrossRefGoogle Scholar
  34. Lipowsky G, Bischoff FR, Schwarzmaier P, Kraft R, Kostka S, Hartmann E, Kutay U, Görlich D (2000) Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J 19(16):4362–4371PubMedCrossRefGoogle Scholar
  35. Maier B, Ogihara T, Trace AP, Tersey SA, Robbins RD, Chakrabarti SK, Nunemaker CS, Stull ND, Taylor CA, Thompson JE, Dondero RS, Lewis EC, Dinarello CA, Nadler JL, Mirmira RG (2010) The unique hypusine modification of eIF5A promotes islet β cell inflammation and dysfunction in mice. J Clin Invest 120:2156–2170PubMedCrossRefGoogle Scholar
  36. Marchet A, Mocellin S, Belluco C, Ambrosi A, DeMarchi F, Mammano E, Digito M, Leon A, D’Arrigo A, Lise M, Nitti D (2007) Gene expression profile of primary gastric cancer: towards the prediction of lymph node status. Ann Surg Oncol 14:1058–1064PubMedCrossRefGoogle Scholar
  37. Nishimura K, Murozumi K, Shirahata A, Park MH, Kashiwagi K, Igarashi K (2005) Independent roles of eIF5A and polyamines in cell proliferation. Biochem J 385:779–785PubMedCrossRefGoogle Scholar
  38. Nishimura K, Lee SB, Park JH, Park MH (2011) Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development. Amino Acids (in press)Google Scholar
  39. Park MH, Wolff EC, Folk JE (1993) Hypusine: its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation. Biofactors 4(2):95–104Google Scholar
  40. Park J-H, Aravind L, Wolff EC, Kaevel J, Kim YS, Park MH (2006) Molecular cloning, expression and structural prediction of deoxyhypusine hydroxylase: a HEAT-repeat-containing metalloenzyme. Proc Natl Acad Sci USA 103:51–56PubMedCrossRefGoogle Scholar
  41. Park MH, Joe YA, Kang KR (1998) Deoxyhypusine synthase activity is essential for cell viability in the yeast Saccharomyces cerevisiae. J Biol Chem 273:1677–1683PubMedCrossRefGoogle Scholar
  42. Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Functional Significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38:491–500PubMedCrossRefGoogle Scholar
  43. Park MH, Wolff EC, Smit-McBride Z, Hershey JW, Folk JE (1991) Comparison of the activities of variant forms of eIF-4D. The requirement for hypusine or deoxyhypusine. J Biol Chem 266(13):7988–7994PubMedGoogle Scholar
  44. Park MH, Wolff EC, Lee YB, Folk JE (1994) Antiproliferative effects of inhibitors of deoxyhypusine synthase: inhibition of growth of Chinese hamster ovary cells by guanyl diamines. J Biol Chem 269:27827–27832PubMedGoogle Scholar
  45. Rahman-Roblick R, Roblick UJ, Hellman U, Conrotto P, Liu T, Becker S, Hirschberg D, Jornvall H, Auer G, Wiman KG (2007) p53 targets identified by protein expression profiling. Proc Natl Acad Sci USA 104:5401–5406PubMedCrossRefGoogle Scholar
  46. Rosorius O, Reichart B, Kratzer F, Heger P, Dabauvalle MC, Hauber J (1999) Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM1. J Cell Sci 112:2369–2380PubMedGoogle Scholar
  47. Ruhl M, Himmelspach M, Bahr GM, Hammerschmid F, Jaksche H, Wolff B, Aschauer H, Farrington GK, Probst H, Bevec D, Hauber J (1993) Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans-activation. J Cell Biol 123:1309–1320PubMedCrossRefGoogle Scholar
  48. Saini P, Eyler DE, Green R, Dever TE (2009) Hypusine-containing protein eIF5A promotes translation elongation. Nature 459:118–121PubMedCrossRefGoogle Scholar
  49. Sasaki K, Abid MR, Miyazaki M (1996) Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae. FEBS Lett 384:151–154PubMedCrossRefGoogle Scholar
  50. Schnier J, Schwelberger HG, Smit-McBride Z, Kang HA, Hershey JW (1991) Translation initiation factor 5A and its hypusine modification are essential for viability in the yeast Saccharomyces cerevisiae. Mol Cell Biol 11:3105–3114PubMedGoogle Scholar
  51. Sham JS, Tang TC, Fang Y, Sun L, Qin LX, Wu QL, Xie D, Guan XY (2002) Recurrent chromosome alterations in primary ovarian carcinoma in Chinese women. Cancer Genet Cytogenet 133:39–44PubMedCrossRefGoogle Scholar
  52. Shi XP, Yin KC, Zimolo ZA, Stern AM, Waxman L (1996) The subcellular distribution of eukaryotic translation initiation factor, eIF-5A, in cultured cells. Exp Cell Res 225:348–356PubMedCrossRefGoogle Scholar
  53. Shi XP, Yin KC, Waxman L (1997) Effects of inhibitors of RNA and protein synthesis on the subcellular distribution of the eukaryotic translation initiation factor, eIF-5A, and the HIV-1 Rev protein. Biol Signals 6:143–149PubMedCrossRefGoogle Scholar
  54. Smit-McBride Z, Schnier J, Kaufman RJ, Hershey JW (1989) Protein synthesis initiation factor 4D. Functional comparison of native and unhypusinated forms of the protein. J Biol Chem 264:18527–18530PubMedGoogle Scholar
  55. Sun Z, Cheng Z, Taylor CA, McConkey BJ, Thompson JE (2010) Apoptosis induction by eIF5A1 involves activation of the intrinsic mitochondrial pathway. J Cell Physiol 223(3):798–809PubMedGoogle Scholar
  56. Tang DJ, Dong SS, Ma NF, Xie D, Chen L, Fu L, Lau SH, Li Y, Li Y, Guan XY (2010) Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma. Hepatology 51(4):1255–1263PubMedCrossRefGoogle Scholar
  57. Taylor CA, Senchyna M, Flanagan J, Joyce EM, Cliche DO, Boone AN, Culp-Stewart S, Thompson JE (2004) Role of eIF5A in TNF-alpha-mediated apoptosis of lamina cribrosa cells, Invest. Ophthalmol. Visual Sci 45:3568–3576Google Scholar
  58. Taylor CA, Sun Z, Cliché DO, Ming H, Eshaque B, Jin S, Hopkins MT, Thai B, Thompson JE (2007) Eukaryotic translation initiation factor 5A induces apoptosis in colon cancer cells and associates with the nucleus in response to tumour necrosis factor a signaling. Exp Cell Res 313:437–449PubMedCrossRefGoogle Scholar
  59. Tome ME, Gerner EW (1997) Cellular eukaryotic initiation factor 5A content as a mediator of polyamine effects on growth and apoptosis. Biol Signals 6(3):150–156PubMedCrossRefGoogle Scholar
  60. Tome ME, Fiser SM, Payne CM, Gerner EW (1997) Excess putrescine accumulation inhibits the formation of modified eukaryotic initiation factor 5A (eIF-5A) and induces apoptosis. Biochem J 328:847–854PubMedGoogle Scholar
  61. Valentini SR, Casolari JM, Oliveira CC, Silver PA, McBride AE (2002) Genetic interactions of yeast eukaryotic translation initiation factor 5A (eIF5A) reveal connections to poly(A)-binding protein and protein kinase C signalling. Genetics 160:393–405PubMedGoogle Scholar
  62. Wolff EC, Park MH, Folk JE (1990) Cleavage of spermidine as the first step in deoxyhypusine synthesis. The role of NAD. J Biol Chem 265:4793–4799PubMedGoogle Scholar
  63. Xie D, Ma NF, Pan ZZ, Wu HX, Liu YD, Wu GQ, Kung HF, Guan XY (2008) Overexpression of EIF-5A2 is associated with metastasis of human colorectal carcinoma. Hum Pathol 39:80–86PubMedCrossRefGoogle Scholar
  64. Yang GF, Xie D, Liu JH, Luo JH, Li LJ, Hua WF, Wu HM, Kung HF, Zeng YX, Guan XY (2009) Expression and amplification of eIF-5A2 in human epithelial ovarian tumors and overexpression of EIF-5A2 is a new independent predictor of outcome in patients with ovarian carcinoma. Gynecol Oncol 112:314–318PubMedCrossRefGoogle Scholar
  65. Zanelli CF, Valentini SR (2007) Is there a role for eIF5A in translation? Amino Acids 33:351–358PubMedCrossRefGoogle Scholar
  66. Zender L, Xue W, Zuber J, Semighini CP, Krasnitz A, Ma B, Zender P, Kubicka S, Luk JM, Schirmacher P, McCombie RW, Wigler M, Hicks J, Hannon GJ, Powers S, Lowe SW (2008) An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135:852–864PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Caraglia
    • 1
    Email author
  • M. H. Park
    • 2
  • E. C. Wolff
    • 2
  • M. Marra
    • 1
  • A. Abbruzzese
    • 1
  1. 1.Department of Biochemistry and BiophysicsSecond University of NaplesNaplesItaly
  2. 2.The Oral and Pharyngeal Cancer BranchNIDCR, National Institutes of HealthBethesdaUSA

Personalised recommendations