Skip to main content
Log in

Beneficial effect of taurine on hypoxia- and glutamate-induced endoplasmic reticulum stress pathways in primary neuronal culture

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Stroke (hypoxia) is one of the leading causes of mortality in the developed countries, and it can induce excessive glutamate release and endoplasmic reticulum (ER) stress. Taurine, as a free amino acid, present in high concentrations in a range of organs in mammals, can provide protection against multiple neurological diseases. Here, we present a study to investigate the potential protective benefits of taurine against ER stress induced by glutamate and hypoxia/reoxygenation in primary cortical neuronal cultures. We found that taurine suppresses the up-regulation of caspase-12 and GADD153/CHOP induced by hypoxia/reoxygenation, suggesting that taurine may exert a protective function against hypoxia/reoxygenation by reducing the ER stress. Moreover, taurine can down-regulate the ratio of cleaved ATF6 and full length ATF6, and p-IRE1 expression, indicating that taurine inhibits the ER stress induced by hypoxia/reoxygenation and glutamate through suppressing ATF6 and IRE1 pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anelli T, Sitia R (2008) Protein quality control in the early secretory pathway. EMBO J 27:315–327

    Article  PubMed  CAS  Google Scholar 

  • Azfer A, Niu J, Rogers LM, Adamski FM, Kolattukudy PE (2006) Activation of endoplsmic reticulum stress response during the development of ischemic heart disease. Am J Physiol Heart Circ Physiol 291:H1411–H1420

    Article  PubMed  CAS  Google Scholar 

  • Birdsall TC (1998) Therapeutic applications of taurine. Altern Med Rev 3:128–136

    PubMed  CAS  Google Scholar 

  • Chang L, Xu J, Yu F, Zhao J, Tang X, Tang C (2004) Taurine protected myocardial mitochondria injury induced by hyperhomocysteinemia in rats. Amino Acids 27:37–48

    Article  PubMed  CAS  Google Scholar 

  • Chen WQ, Jin H, Nguyen M, Carr J, Lee YJ, Hsu CC, Faiman MD, Schloss JV, Wu JY (2001) Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neurons. J Neurosci Res 66:612–619

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Shen J, Prywes R (2002) The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 277:13045–13052

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Zhang Q, Wang J, Liu F, Mi M, Xu H, Chen F, Zeng K (2009) Taurine protects transformed rat retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction. Brain Res 1279:131–138

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Fass DM, Reynolds IJ (1999) Emergence of excitotoxicity in cultured forebrain neurons coincides with larger glutamate-stimulated [Ca2+]i increases and NMDA receptor mRNA levels. Brain Res 849:97–108

    Article  PubMed  CAS  Google Scholar 

  • Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischaemic neuronal death. Annu Rev Neurosci 13:171–182

    Article  PubMed  CAS  Google Scholar 

  • DeGracia DJ, Montie HL (2004) Cerebral ischemia and the unfolded protein response. J Neurochem 91:1–8

    Article  PubMed  CAS  Google Scholar 

  • Hansen SH, Andersen ML, Cornett C, Gradinaru R, Grunnet N (2010) A role for taurine in mitochondrial function. J Biomed Sci 17(Suppl 1):S23

    Article  PubMed  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000a) Regulated translation initiation controls stress induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000b) PERK is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897–904

    Article  PubMed  CAS  Google Scholar 

  • Huxtable RJ (1992) The physiological actions of taurine. Physiol Rev 72:101–163

    PubMed  CAS  Google Scholar 

  • Idrissi AE, Trenkner E (1999) Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci 19:9459–9468

    PubMed  Google Scholar 

  • Jong CJ, Azuma J, Schaffer S (2011) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids (published on line: June21, 2011)

  • Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Azam S, Sullivan JM, Owen C, Cavener DR, Zhang P, Ron D, Harding HP, Chen JJ, Han A, White BC, Krause GS, DeGracia DJ (2001) Brain ischemia and reperfusion activates the eukaryotic initiation factor 2α kinase, PERK. J Neurochem 77:1418–1421

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28:51–65

    Article  PubMed  CAS  Google Scholar 

  • Michalk DV, Wingenfeld P, Licht C (1997) Protection against cell damage due to hypoxia and reoxygenation: the role of taurine and the involved mechanisms. Amino Acids 13:337–346

    Article  CAS  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  • Nemetski SM, Gardner LB (2007) Hypoxic regulation of id-1 and activation of the unfolded protein response are aberrant in neuroblastoma. J Biol Chem 282:240–248

    Article  PubMed  CAS  Google Scholar 

  • Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11:462–468

    Article  PubMed  Google Scholar 

  • Nilsson GE, Lutz PL (1991) Release of inhibitory neurotransmitters in response to anoxia in turtle brain. Am J Physiol 261:R32–R37

    PubMed  CAS  Google Scholar 

  • Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    Article  PubMed  CAS  Google Scholar 

  • Pan C, Giraldo GS, Prentice H, Wu JY (2010a) Taurine protection of PC12 cells against endoplasmic reticulum stress induced by oxidative stress. J Biomed Sci 17:S17

    Article  PubMed  Google Scholar 

  • Pan C, Gupta A, Prentice H, Wu JY (2010b) Protection of taurine and granulocyte colony-stimulating factor against excitotoxicity induced by glutamate in primary cortical neurons. J Biomed Sci 17:S18

    Google Scholar 

  • Paschen W, Gissel C, Linden T, Althausen S, Doutheil J (1998) Activation of gadd153 expression through transient cerebral ischemia: evidence that ischemia causes endoplasmic reticulum dysfunction. Brain Res Mol Brain Res 60:115–122

    Article  PubMed  CAS  Google Scholar 

  • Paula-Lima AC, Felice GF, Brito-Moreira J, Ferreira TS (2005) Activation of GABAA receptors by taurine and muscimol blocks the neurotoxicity of α-amyloid in rat hippocampal and cortical neurons. Neuropharmacology 49:1140–1148

    Article  PubMed  CAS  Google Scholar 

  • Pizzo P, Pozzan T (2007) Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol 17:511–517

    Article  PubMed  CAS  Google Scholar 

  • Prostko CR, Brostrom MA, Brostrom CO (1993) Reversible phosphorylation of eukaryotic initiation factor 2 alpha in response to endoplasmic reticular signaling. Mol Cell Biochem 128:255–265

    Article  Google Scholar 

  • Ron D (2002) Translational control in the endoplasmic reticulum stress response. J Clin Invest 110:1383–1388

    PubMed  CAS  Google Scholar 

  • Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111

    Article  PubMed  CAS  Google Scholar 

  • Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87:91–99

    Article  PubMed  CAS  Google Scholar 

  • Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147

    PubMed  CAS  Google Scholar 

  • Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO J 7:880–885

    Article  CAS  Google Scholar 

  • Tadros MG, Khalifa AE, Abdel-Naim AB, Arafa HM (2005) Neuroprotective effect of taurine in 3-nitropropionic acid-induced experimental animal model of Huntington’s disease phenotype. Pharmacol Biochem Behav 82:574–582

    Article  PubMed  CAS  Google Scholar 

  • Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada JI, Ushio Y, Mori M (2004) Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ 11:403–415

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Ohyabu Y, Takahashi K, Solodushko V, Takatani T, Itoh T, Schaffer SW, Azuma J (2003) Taurine renders the cell resistant to ischemia-induced injury in cultured neonatal rat cardiomyocytes. J Cardiovasc Pharmacol 41:726–733

    Article  PubMed  CAS  Google Scholar 

  • Takatani T, Takahashi K, Uozumi Y, Matsuda T, Ito T, Schaffer SW, Fujio Y, Azuma J (2004a) Taurine prevents the ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes through Akt/caspase-9 pathway. Biochem Biophys Res Commun 316(2):484–489

    Article  PubMed  CAS  Google Scholar 

  • Takatani T, Takahashi K, Uozumi Y, Shikata E, Yamamoto Y, Ito T, Matsuda T, Schaffer SW, Fujio Y, Azuma J (2004b) Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am J Physiol Cell Physiol 287:C949–C953

    Article  PubMed  CAS  Google Scholar 

  • Taranukhin AG, Taranukhina EY, Saransaari P, Djatchkova IM, Pelto-Huikko M, Oja SS (2008) Taurine reduces caspase-8 and caspase-9 expression induced by ischemia in the mouse hypothalamic nuclei. Amino Acids 34:169–174

    Article  PubMed  CAS  Google Scholar 

  • Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 17:5708–5717

    Article  PubMed  CAS  Google Scholar 

  • Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Taiichi K, Tohyama M (2001) Activation of Caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276:13935–13940

    PubMed  CAS  Google Scholar 

  • Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins Involvement of basic leucine zipper transcription factors. J Biol Chem 273:33741–33749

    Article  PubMed  CAS  Google Scholar 

  • Yung HW, Korolchuk S, Tolkovsky AM, Charnock-Jones DS, Burton GJ (2007) Endoplasmic reticulum stress exacerbates ischemia-reperfusion-induced apoptosis through attenuation of Akt protein synthesis in human choriocarcinoma cells. FASEB J 21:872–884

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported partially by grant from Department of Health, James & Esther King Biomedical Research Program, State of Florida (09KW-11).

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Howard Prentice or Jang-Yen Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, C., Prentice, H., Price, A.L. et al. Beneficial effect of taurine on hypoxia- and glutamate-induced endoplasmic reticulum stress pathways in primary neuronal culture. Amino Acids 43, 845–855 (2012). https://doi.org/10.1007/s00726-011-1141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1141-6

Keywords

Navigation