Skip to main content
Log in

Regulation of polyamine metabolism by translational control

Amino Acids Aims and scope Submit manuscript

Abstract

Polyamines are low molecular weight, positively charged compounds that are ubiquitous in all living cells. They play a crucial role in many biochemical processes including regulation of transcription and translation, modulation of enzyme activities, regulation of ion channels and apoptosis. A strict balance between synthesis, catabolism and excretion tightly controls the cellular concentration of polyamines. The concentrations of rate-limiting enzymes in the polyamine synthesis and degradation pathways are regulated at different levels, including transcription, translation and degradation. Polyamines can modulate the translation of most of the enzymes required for their synthesis and catabolism through feedback mechanisms that are unique for each enzyme. Translational control is associated with cis-acting and trans-acting factors that can be influenced by the concentration of polyamines through mechanisms that are not completely understood. In this review, we present an overview of the translational control mechanisms of the proteins in the polyamine pathway, including ornithine decarboxylase (ODC), ODC antizyme, S-adenosylmethionine decarboxylase and spermidine/spermine N 1 acetyltransferase, highlighting the areas where more research is needed. A better understanding of the translational control of these enzymes would offer the possibility of a novel pharmacological intervention against cancer and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Abbreviations

ODC:

Ornithine decarboxylase

dcAdoMet:

Decarboxylated S-adenosylmethionine

AdoMetDC:

S-Adenosylmethionine decarboxylase

SSAT:

Spermidine/spermine N 1 acetyltransferase

uORF:

Upstream open reading frame

DENSPM:

N 1, N 11 Diethylnorspermine

References

  • Agostinelli E, Marques MPM, Calheiros R, Gil F, Tempera G, Viceconte N, Battaglia V, Grancara S, Toninello A (2010) Polyamines: fundamental characters in chemistry and biology. Amino Acids 38:393–403

    Article  PubMed  CAS  Google Scholar 

  • Alhonen-Hongisto L, Seppanen P, Janne J (1980) Intracellular putrescine and spermidine deprivation induces increased uptake of the natural polyamines and methylglyoxal bis (guanylhydrazone). Biochem J 192:941–945

    PubMed  CAS  Google Scholar 

  • Auvinen M, Laine A, PaasinenSohns A, Kangas A, Kangas L, Saksela O, Andersson LC, Holtta E (1997) Human ornithine decarboxylase-overproducing NIH3T3 cells induce rapidly growing, highly vascularized tumors in nude mice. Cancer Res 57:3016–3025

    PubMed  CAS  Google Scholar 

  • Bekaert M, Firth AE, Zhang Y, Gladyshev VN, Atkins JF, Baranov PV (2010) Recode-2: new design, new search tools, and many more genes. Nucleic Acids Res 38:D69–D74

    Article  PubMed  CAS  Google Scholar 

  • Bellofernandez C, Packham G, Cleveland JL (1993) The ornithine decarboxylase gene a transciptional target of C-MYC. Proc Natl Acad Sci USA 90:7804–7808

    Article  CAS  Google Scholar 

  • Besse F, Ephrussi A (2008) Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat Rev Mol Cell Biol 9:971–980

    Article  PubMed  CAS  Google Scholar 

  • Butcher NJ, Broadhurst GM, Minchin RF (2007) Polyamine-dependent regulation of spermidine-spermine N-1-acetyltransferase mRNA translation. J Biol Chem 282:28530–28539

    Article  PubMed  CAS  Google Scholar 

  • Calvo SE, Pagliarini DJ, Mootha VK (2009) Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci USA 106:7507–7512

    Article  PubMed  CAS  Google Scholar 

  • Casero RA Jr, Pegg AE (1993) Spermidine/spermine N1-acetyltransferase—the turning point in polyamine metabolism. Faseb J 7:653–661

    PubMed  CAS  Google Scholar 

  • Casero RA, Pegg AE (2009) Polyamine catabolism and disease. Biochem J 421:323–338

    Article  PubMed  CAS  Google Scholar 

  • Chu E, Voeller D, Koeller DM, Drake JC, Takimoto CH, Maley GF, Maley F, Allegra CJ (1993) Identification of an RNA binding site for human thymidylate synthase. Proc Natl Acad Sci USA 90:517–521

    Article  PubMed  CAS  Google Scholar 

  • Cohen S (1998) A guide to polyamines. Oxford University Press, New York

  • Cooper HL, Park MH, Folk JE, Safer B, Braverman R (1983) Identification of the hypusine-containing protein hy+ as translation initiation-factor EIF-4D. Proc Natl Acad Sci of USA Biol Sci 80:1854–1857

    Article  CAS  Google Scholar 

  • Eloranta TO, Kajander EO (1984) Catabolism and lability of S-adenosyl-l-methionine in rat-liver extracts. Biochem J 224:137–144

    PubMed  CAS  Google Scholar 

  • FogelPetrovic M, Vujcic S, Miller J, Porter CW (1996) Differential post-transcriptional control of ornithine decarboxylase and spermidine-spermine N-1-acetyltransferase by polyamines. FEBS lett 391:89–94

    Article  CAS  Google Scholar 

  • Fong LYY, Feith DJ, Pegg AE (2003) Antizyme overexpression in transgenic mice reduces cell proliferation, increases apoptosis, and reduces N-nitrosomethylbenzylamine-induced forestomach carcinogenesis. Cancer Res 63:3945–3954

    PubMed  CAS  Google Scholar 

  • Fu LN, Benchimol S (1997) Participation of the human p53 3′UTR in translational repression and activation following gamma-irradiation. EMBO J 16:4117–4125

    Article  PubMed  CAS  Google Scholar 

  • Gebauer F, Hentze MW (2004) Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5:827–835

    Article  PubMed  CAS  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N (1999) eIF4 Initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963

    Article  PubMed  CAS  Google Scholar 

  • Han LP, Xu CQ, Guo YM, Li HZ, Jiang CM, Zhao YJ (2009) Polyamine metabolism in rat myocardial ischemia-reperfusion injury. Int J Cardiol 132:142–144

    Article  PubMed  Google Scholar 

  • Hayashi SI, Murakami Y (1995) Rapid and regulated degradation of ornithine decarboxylase. Biochem J 306:1–10

    PubMed  CAS  Google Scholar 

  • Heller JS, Fong WF, Canellakis ES (1976) Induction of a protein inhibitor to ornithine decarboxylase by end products of its reaction. Proc Natl Acad Sci USA 73:1858–1862

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Kashiwagi K, Watanabe S, Kameji T, Hayashi S, Igarashi K (1990) Influence of the 5′-untranslated region of ornithine decarboxylase messenger-RNA and spermidine on ornithine decarboxylase synthesis. J Biol Chem 265:13036–13041

    PubMed  CAS  Google Scholar 

  • Ivanov IP, Atkins JF (2007) Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res 35:1842–1858

    Article  PubMed  CAS  Google Scholar 

  • Janne J, Raina A (1969) On stimulation of ornithine decarboxylase and RNA polymerase activity in rat liver after treatment with growth hormone. Biochimica Biophysica Acta 174:769–772

    CAS  Google Scholar 

  • Jell J, Merali S, Hensen ML, Mazurchuk R, Spernyak JA, Diegelman P, Kisiel ND, Barrero C, Deeb KK, Alhonen L et al (2007) Genetically altered expression of spermidine/spermine N1-acetyltransferase affects fat metabolism in mice via acetyl-CoA. J Biol chem 282:8404–8413

    Article  PubMed  CAS  Google Scholar 

  • Kahana C (2007) Ubiquitin dependent and independent protein degradation in the regulation of cellular polyamines. Amino Acids 33:225–230

    Article  PubMed  CAS  Google Scholar 

  • Kahana C, Nathans D (1985) Translational regulation of mammalian ornithine decarboxylase by polyamines. J Biol Chem 260:5390–5393

    Google Scholar 

  • Kashiwagi K, Ito K, Igarashi K (1991) Spermidine regulation of ornithine decarboxylase synthesis by a GC-rich sequence of the 5′-untranslated region. Biochem Biophys Res Commun 178:815–822

    Article  PubMed  CAS  Google Scholar 

  • Kee K, Foster BA, Merali S, Kramer DL, Hensen ML, Diegelman P, Kisiel N, Vujcic S, Mazurchuk RV, Porter CW (2004) Activated polyamine catabolism depletes acetyl-CoA pools and suppresses prostate tumor growth in TRAMP mice. J Biol Chem 279:40076–40083

    Article  PubMed  CAS  Google Scholar 

  • Kitani T, Fujisawa H (1984) Purification and some properties of a protein inhibitor (antizyme) of ornithine decarboxylase from rat-liver. J Biol Chem 259:36–40

    Google Scholar 

  • Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37

    Article  PubMed  CAS  Google Scholar 

  • Law GL, Raney A, Heusner C, Morris DR (2001) Polyamine regulation of ribosome pausing at the upstream open reading frame of S-adenosylmethionine decarboxylase. J Biol Chem 276:38036–38043

    PubMed  CAS  Google Scholar 

  • Lewandowski NM, Ju SL, Verbitsky M, Ross B, Geddie ML, Rockenstein E, Adame A, Muhammad A, Vonsattel JP, Ringe D et al (2010) Polyamine pathway contributes to the pathogenesis of Parkinson disease. Proc Natl Acad Sci USA 107:16970–16975

    Article  PubMed  CAS  Google Scholar 

  • Lorenzini EC, Scheffler IE (1997) Co-operation of the 5′ and 3′ untranslated regions of ornithine decarboxylase mRNA and inhibitory role of its 3′ untranslated region in regulating the translational efficiency of hybrid RNA species via cellular factor(s). Biochem J 326:361–367

    PubMed  CAS  Google Scholar 

  • Lovkvist E, Stjernborg L, Persson L (1993) Feedback regulation of mammalian ornithine decarboxylase. Studies using a transient expression system. Eur J Biochem 215:753–759

    Article  PubMed  CAS  Google Scholar 

  • Manzella JM, Blackshear PJ (1992) Specific protein-binding to a conserved region of the ornithine decarboxylase messenger-RNA 5′-untranslated region. J Biol Chem 267:7077–7082

    PubMed  CAS  Google Scholar 

  • Manzella JM, Rychlik W, Rhoads RE, Hershey JWB, Blackshear PJ (1991) Insulin induction of ornithine decarboxylase—importance of messenger-RNAn secondary structure and phosphorylation of eukaryotic initiation factor-eIF-4B and factor-eIF-4E. J Biol Chem 266:2383–2389

    PubMed  CAS  Google Scholar 

  • Marton LJ, Pegg AE (1995) Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 35:55–91

    Article  PubMed  CAS  Google Scholar 

  • Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins JF, Gesteland RF, Hayashi S (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51–60

    Article  PubMed  CAS  Google Scholar 

  • Matsui I, Pegg AE (1980) Increase in acetylation of spermidine in rat-liver extracts brought about by treatment with carbon-tetrachloride. Biochem Biophys Res Commun 92:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Matsui I, Wiegand L, Pegg AE (1981) Properties of spermidine N-acetyltransferase from livers of rats treated with carbon-tetrachloride and its role in the conversion of spermidine into putrescine. J Biol Chem 256:2454–2459

    PubMed  CAS  Google Scholar 

  • Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A (1992) Ornithine decarboxylase is degraded by the 26S-proteasome without ubiquitination. Nature 360:597–599

    Article  PubMed  CAS  Google Scholar 

  • Park MH, Joe YA, Kang KR, Lee YB, Wolff EC (1996) The polyamine-derived amino acid hypusine: its post-translational formation in eIF-5A and its role in cell proliferation. Amino Acids 10:109–121

    Article  CAS  Google Scholar 

  • Parry L, Balana Fouce R, Pegg AE (1995) Post-transcriptional regulation of the content of spermidine/spermine N1-acetyltransferase by N1N12-bis(ethyl)spermine. Biochem J 305(Pt 2):451–458

    PubMed  CAS  Google Scholar 

  • Petros LM, Graminski GF, Robinson S, Burns MR, Kisiel N, Gesteland RF, Atkins JF, Kramer DL, Howard MT, Weeks RS (2006) Polyamine analogs with xylene rings induce antizyme frameshifting, reduce ODC activity, and deplete cellular polyamines. J Biochem 140:657–666

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer LM, Yang CH, Murti A, McCormack SA, Viar MJ, Ray RM, Johnson LR (2001) Polyamine depletion induces rapid NF-kappa B activation in IEC-6 cells. J Biol Chem 276:45909–45913

    Article  PubMed  CAS  Google Scholar 

  • Pietila M, Alhonen L, Halmekyto M, Kanter P, Janne J, Porter CW (1997) Activation of polyamine catabolism profoundly alters tissue polyamine pools and affects hair growth and female fertility in transgenic mice overexpressing spermidine/spermine N-1-acetyltransferase. J Biol Chem 272:18746–18751

    Article  PubMed  CAS  Google Scholar 

  • Pignatti C, Tantini B, Stefanelli C, Flamigni F (2004) Signal transduction pathways linking polyamines to apoptosis. Amino Acids 27:359–365

    Article  PubMed  CAS  Google Scholar 

  • Porter CW, Bergeron RJ (1983) Spermidine requirement for cell proliferation in eukaryotic cells: structural specificity and quantitation. Science 219:1083–1085

    Article  PubMed  CAS  Google Scholar 

  • Porter CW, Bergeron RJ (1988) Enzyme regulation as an approach to interference with polyamine biosynthesis—an alternative to enzyme inhibition. Adv Enzym Regul 27:57–79

    Article  CAS  Google Scholar 

  • Proud CG, Denton RM (1997) Molecular mechanisms for the control of translation by insulin. Biochem J 328:329–341

    PubMed  CAS  Google Scholar 

  • Pyronnet S, Pradayrol L, Sonenberg N (2000) A cell cycle-dependent internal ribosome entry site. Molecular cell 5:607–616

    Article  PubMed  CAS  Google Scholar 

  • Raney A, Baron AC, Mize GJ, Law GL, Morris DR (2000) In vitro translation of the upstream open reading frame in the mammalian mRNA encoding S-adenosylmethionine decarboxylase. J Biol Chem 275:24444–24450

    Article  PubMed  CAS  Google Scholar 

  • Raney A, Law GL, Mize GJ, Morris DR (2002) Regulated translation termination at the upstream open reading frame in S-adenosylmethionine decarboxylase mRNA. J Biol Chem 277:5988–5994

    Article  PubMed  CAS  Google Scholar 

  • Seiler N (1987) Functions of polyamine acetylation. Can J Physiol Pharmacol 65:2024–2035

    Article  PubMed  CAS  Google Scholar 

  • Seiler N (2004) Catabolism of polyamines. Amino Acids 26:217–233

    PubMed  CAS  Google Scholar 

  • Shantz LM, Hu RH, Pegg AE (1996) Regulation of ornithine decarboxylase in a transformed cell line that overexpresses translation initiation factor eIF-4E. Cancer Res 56:3265–3269

    PubMed  CAS  Google Scholar 

  • Sonenberg N, Hershey JWB, Mathews M (2000) Translational control of gene expression, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

  • Suppola S, Pietila M, Parkkinen JJ, Korhonen VP, Alhonen L, Halmekyto M, Porter CW, Janne J (1999) Overexpression of spermidine/spermine N1-acetyltransferase under the control of mouse metallothionein I promoter in transgenic mice: evidence for a striking post-transcriptional regulation of transgene expression by a polyamine analogue. Biochem J 338(Pt 2):311–316

    Article  PubMed  CAS  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  PubMed  CAS  Google Scholar 

  • Takashima T, Fujiwara Y, Higuchi K, Arakawa T, Yano Y, Hasuma T, Otani S (2001) PPAR-gamma ligands inhibit growth of human esophageal adenocarcinoma cells through induction of apoptosis, cell cycle arrest and reduction of ornithine decarboxylase activity. Int J Oncol 19:465–471

    PubMed  CAS  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wallstrom EL, Persson L (1999) No role of the 5′ untranslated region of ornithine decarboxylase mRNA in the feedback control of the enzyme. Mol Cell Biochem 197:71–78

    Article  PubMed  CAS  Google Scholar 

  • Wang JY, Casero RA (2006) Polyamine cell signaling: physiology, pharmacology, and cancer research. Humana Press, Totowa

    Book  Google Scholar 

  • Wang YL, Devereux W, Stewart TM, Casero RA (1999) Cloning and characterization of human polyamine-modulated factor-1, a transcriptional cofactor that regulates the transcription of the spermidine/spermine N-1-acetyltransferase gene. J Biol Chem 274:22095–22101

    Article  PubMed  CAS  Google Scholar 

  • Wang YL, Devereux W, Stewart TM, Casero RA (2001) Characterization of the interaction between the transcription factors human polyamine modulated factor (PMF-1) and NF-E2-related factor 2 (Nrf-2) in the transcriptional regulation of the spermidine/spermine N-1-acetyltransferase (SSAT) gene. Biochem J 355:45–49

    Article  PubMed  CAS  Google Scholar 

  • Wetters TV, Brabant M, Coffino P (1989a) Regulation of mouse ornithine decarboxylase activity by cell-growth, serum and tetradecanoyl phorbol acetate is governed primarily by sequences within the coding region of the gene. Nucleic Acids Res 17:9843–9860

    Article  Google Scholar 

  • Wetters TV, Macrae M, Brabant M, Sittler A, Coffino P (1989b) Polyamine-mediated regulation of mouse ornithine decarboxylase is posttranslational. Mol Cell Biol 9:5484–5490

    Google Scholar 

  • Zahedi K, Lentsch AB, Okaya T, Barone S, Sakai N, Witte DP, Arend LJ, Alhonen L, Jell J, Janne J et al (2009) Spermidine/spermine-N-1-acetyltransferase ablation protects against liver and kidney ischemia-reperfusion injury in mice. Am J Physiol Gastrointest Liver Physiol 296:G899–G909

    Article  PubMed  CAS  Google Scholar 

  • Zahedi K, Huttinger F, Morrison R, Murray-Stewart T, Casero RA, Strauss KI (2010) Polyamine catabolism is enhanced after traumatic brain injury. J Neurotrauma 27:515–525

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oscar Perez-Leal or Salim Merali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Leal, O., Merali, S. Regulation of polyamine metabolism by translational control. Amino Acids 42, 611–617 (2012). https://doi.org/10.1007/s00726-011-1036-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1036-6

Keywords

Navigation