Skip to main content

Advertisement

Log in

Characterization of transgenic mice with overexpression of spermidine synthase

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

A composite cytomegalovirus-immediate early gene enhancer/chicken β-actin promoter (CAG) was utilized to generate transgenic mice that overexpress human spermidine synthase (SpdS) to determine the impact of elevated spermidine synthase activity on murine development and physiology. CAG-SpdS mice were viable and fertile and tissue SpdS activity was increased up to ninefold. This increased SpdS activity did not result in a dramatic elevation of spermidine or spermine levels but did lead to a 1.5- to 2-fold reduction in tissue spermine:spermidine ratio in heart, muscle and liver tissues with the highest levels of SpdS activity. This new mouse model enabled simultaneous overexpression of SpdS and other polyamine biosynthetic enzymes by combining transgenic animals. The combined overexpression of both SpdS and spermine synthase (SpmS) in CAG-SpdS/CAG-SpmS bitransgenic mice did not impair viability or lead to overt developmental abnormalities but instead normalized the elevated tissue spermine:spermidine ratios of CAG-SpmS mice. The CAG-SpdS mice were bred to MHC-AdoMetDC mice with a >100-fold increase in cardiac S-adenosylmethionine decarboxylase (AdoMetDC) activity to determine if elevated dcAdoMet would facilitate greater spermidine accumulation in mice with SpdS overexpression. CAG-SpdS/MHC-AdoMetDC bitransgenic animals were produced at the expected frequency and exhibited cardiac polyamine levels comparable to MHC-AdoMetDC littermates. Taken together these results indicate that SpdS levels are not rate limiting in vivo for polyamine biosynthesis and are unlikely to exert significant regulatory effects on cellular polyamine content and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AdoMet:

S-Adenosylmethionine

AdoMetDC:

S-Adenosylmethionine decarboxylase

AZ:

Antizyme

CAG:

Composite cytomegalovirus immediate early gene enhancer-chicken β-actin promoter

dcAdoMet:

Decarboxylated S-adenosylmethionine

DFMO:

α-Difluoromethylornithine

Gy:

Gyro

HA:

Hemagglutinin

MHC:

α-Myosin heavy chain

ODC:

Ornithine decarboxylase

PCR:

Polymerase chain reaction

SpdS:

Spermidine synthase

SpmS:

Spermine synthase

References

  • Basuroy UK, Gerner EW (2006) Emerging concepts in targeting the polyamine metabolic pathway in epithelial cancer chemoprevention and chemotherapy. J Biochem 139(1):27–33

    Article  PubMed  CAS  Google Scholar 

  • Becerra-Solano LE, Butler J, Castaneda-Cisneros G, McCloskey DE, Wang X, Pegg AE, Schwartz CE, Sanchez-Corona J, Garcia-Ortiz JE (2009) A missense mutation, p.V132G, in the X-linked spermine synthase gene (SMS) causes Snyder-Robinson syndrome. Am J Med Genet A 149A(3):328–335

    Article  PubMed  CAS  Google Scholar 

  • Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6(5):373–390

    Article  PubMed  CAS  Google Scholar 

  • Cason AL, Ikeguchi Y, Skinner C, Wood TC, Holden KR, Lubs HA, Martinez F, Simensen RJ, Stevenson RE, Pegg AE, Schwartz CE (2003) X-linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome. Eur J Hum Genet 11(12):937–944

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay MK, Tabor CW, Tabor H (2002) Absolute requirement of spermidine for growth and cell cycle progression of fission yeast (Schizosaccharomyces pombe). Proc Natl Acad Sci USA 99(16):10330–10334

    Article  PubMed  CAS  Google Scholar 

  • de Alencastro G, McCloskey DE, Kliemann SE, Maranduba CM, Pegg AE, Wang X, Bertola DR, Schwartz CE, Passos-Bueno MR, Sertie AL (2008) New SMS mutation leads to a striking reduction in spermine synthase protein function and a severe form of Snyder-Robinson X-linked recessive mental retardation syndrome. J Med Genet 45(8):539–543

    Article  PubMed  Google Scholar 

  • Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Frohlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Feith DJ, Shantz LM, Pegg AE (2001) Targeted antizyme expression in the skin of transgenic mice reduces tumor promoter induction of ornithine decarboxylase and decreases sensitivity to chemical carcinogenesis. Cancer Res 61(16):6073–6081

    PubMed  CAS  Google Scholar 

  • Feith DJ, Shantz LM, Shoop PL, Keefer KA, Prakashagowda C, Pegg AE (2007) Mouse skin chemical carcinogenesis is inhibited by antizyme in promotion-sensitive and promotion-resistant genetic backgrounds. Mol Carcinog 46(6):453–465

    Article  PubMed  CAS  Google Scholar 

  • Forshell TP, Rimpi S, Nilsson JA (2010) Chemoprevention of B-cell lymphomas by inhibition of the Myc target spermidine synthase. Cancer Prev Res (Phila) 3(2):140–147

    Article  Google Scholar 

  • Heby O, Persson L, Rentala M (2007) Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas’ disease, and leishmaniasis. Amino Acids 33(2):359–366

    Article  PubMed  CAS  Google Scholar 

  • Heljasvaara R, Veress I, Halmekyto M, Alhonen L, Janne J, Laajala P, Pajunen A (1997) Transgenic mice overexpressing ornithine and S-adenosylmethionine decarboxylases maintain a physiological polyamine homoeostasis in their tissues. Biochem J 323(Pt 2):457–462

    PubMed  CAS  Google Scholar 

  • Ikeguchi Y, Wang X, McCloskey DE, Coleman CS, Nelson P, Hu G, Shantz LM, Pegg AE (2004) Characterization of transgenic mice with widespread overexpression of spermine synthase. Biochem J 381(Pt 3):701–707

    PubMed  CAS  Google Scholar 

  • Ikeguchi Y, Bewley MC, Pegg AE (2006) Aminopropyltransferases: function, structure and genetics. J Biochem 139(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Janne J, Alhonen L, Pietila M, Keinanen TA (2004) Genetic approaches to the cellular functions of polyamines in mammals. Eur J Biochem 271(5):877–894

    Article  PubMed  CAS  Google Scholar 

  • Janne J, Alhonen L, Pietila M, Keinanen TA, Uimari A, Hyvonen MT, Pirinen E, Jarvinen A (2006) Genetic manipulation of polyamine catabolism in rodents. J Biochem 139(2):155–160

    Article  PubMed  CAS  Google Scholar 

  • Kauppinen L, Myohanen S, Halmekyto M, Alhonen L, Janne J (1993) Transgenic mice over-expressing the human spermidine synthase gene. Biochem J 293(Pt 2):513–516

    PubMed  CAS  Google Scholar 

  • Mackintosh CA, Pegg AE (2000) Effect of spermine synthase deficiency on polyamine biosynthesis and content in mice and embryonic fibroblasts, and the sensitivity of fibroblasts to 1,3-bis-(2-chloroethyl)-N-nitrosourea. Biochem J 351(Pt 2):439–447

    Google Scholar 

  • Madeo F, Tavernarakis N, Kroemer G (2010) Can autophagy promote longevity? Nat Cell Biol 12(9):842–846

    Article  PubMed  CAS  Google Scholar 

  • Nisenberg O, Pegg AE, Welsh PA, Keefer K, Shantz LM (2006) Overproduction of cardiac S-adenosylmethionine decarboxylase in transgenic mice. Biochem J 393(Pt 1):295–302

    PubMed  CAS  Google Scholar 

  • Nishimura K, Nakatsu F, Kashiwagi K, Ohno H, Saito T, Igarashi K (2002) Essential role of S-adenosylmethionine decarboxylase in mouse embryonic development. Genes Cells 7(1):41–47

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TG, Megosh LC, Gilliard G, Soler AP (1997) Ornithine decarboxylase overexpression is a sufficient condition for tumor promotion in mouse skin. Cancer Res 57(13):2630–2637

    PubMed  Google Scholar 

  • Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38(2):491–500

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE (2006) Regulation of ornithine decarboxylase. J Biol Chem 281(21):14529–14532

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE (2009a) Mammalian polyamine metabolism and function. IUBMB Life 61(9):880–894

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE (2009b) S-Adenosylmethionine decarboxylase. Essays Biochem 46:25–45

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE, Wang X (2009) Mouse models to investigate the function of spermine. Commun Integr Biol 2(3):271–274

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE, Wechter R, Poulin R, Woster PM, Coward JK (1989) Effect of S-adenosyl-1, 12-diamino-3-thio-9-azadodecane, a multisubstrate adduct inhibitor of spermine synthase, on polyamine metabolism in mammalian cells. Biochemistry 28(21):8446–8453

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE, Feith DJ, Fong LY, Coleman CS, O’Brien TG, Shantz LM (2003) Transgenic mouse models for studies of the role of polyamines in normal, hypertrophic and neoplastic growth. Biochem Soc Trans 31(2):356–360

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE, Wang X, Schwartz CE, McCloskey DE (2011) Spermine synthase activity affects the content of decarboxylated S-adenosylmethionine. Biochem J 433(1):139–144

    Article  PubMed  CAS  Google Scholar 

  • Pendeville H, Carpino N, Marine JC, Takahashi Y, Muller M, Martial JA, Cleveland JL (2001) The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol Cell Biol 21(19):6549–6558

    Article  PubMed  CAS  Google Scholar 

  • Rider JE, Hacker A, Mackintosh CA, Pegg AE, Woster PM, Casero RA Jr (2007) Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33(2):231–240

    Article  PubMed  CAS  Google Scholar 

  • Sawicki JA, Morris RJ, Monks B, Sakai K, Miyazaki J (1998) A composite CMV-IE enhancer/beta-actin promoter is ubiquitously expressed in mouse cutaneous epithelium. Exp Cell Res 244(1):367–369

    Article  PubMed  CAS  Google Scholar 

  • Shantz LM, Levin VA (2007) Regulation of ornithine decarboxylase during oncogenic transformation: mechanisms and therapeutic potential. Amino Acids 33(2):213–223

    Article  PubMed  CAS  Google Scholar 

  • Shantz LM, Feith DJ, Pegg AE (2001) Targeted overexpression of ornithine decarboxylase enhances beta-adrenergic agonist-induced cardiac hypertrophy. Biochem J 358(Pt 1):25–32

    Article  PubMed  CAS  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376(Pt 1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Ikeguchi Y, McCloskey DE, Nelson P, Pegg AE (2004) Spermine synthesis is required for normal viability, growth, and fertility in the mouse. J Biol Chem 279(49):51370–51375

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Levic S, Gratton MA, Doyle KJ, Yamoah EN, Pegg AE (2009) Spermine synthase deficiency leads to deafness and a profound sensitivity to alpha-difluoromethylornithine. J Biol Chem 284(2):930–937

    Article  PubMed  CAS  Google Scholar 

  • Wiest L, Pegg AE (1998) Assay of spermidine and spermine synthases. Methods Mol Biol 79:51–57

    PubMed  CAS  Google Scholar 

  • Wu H, Min J, Ikeguchi Y, Zeng H, Dong A, Loppnau P, Pegg AE, Plotnikov AN (2007) Structure and mechanism of spermidine synthases. Biochemistry 46(28):8331–8339

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37(1):153–168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Tom Salada of the Penn State University Transgenic Mouse Facility for microinjection of the CAG-SpdS construct, the Penn State University College of Medicine Macromolecular Synthesis and DNA Sequencing Cores, and the technicians of the Penn State University College of Medicine Department of Comparative Medicine for expert animal care. We thank Dr. J.A. Sawicki for providing the pCX-EGFP plasmid and Dr. M. Okabe for permission to use this construct in our experiments. Supported by National Institutes of Health grants CA-018138 (DJF) and GM-26290 (AEP).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Feith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, C., Welsh, P.A., Sass-Kuhn, S. et al. Characterization of transgenic mice with overexpression of spermidine synthase. Amino Acids 42, 495–505 (2012). https://doi.org/10.1007/s00726-011-1028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1028-6

Keywords

Navigation