Skip to main content

Advertisement

Log in

TG2, a novel extracellular protein with multiple functions

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

TG2 is multifunctional enzyme which can be secreted to the cell surface by an unknown mechanism where its Ca2+-dependent transamidase activity is implicated in a number of events important to cell behaviour. However, this activity may only be transient due to the oxidation of the enzyme in the extracellular environment including its reaction with NO probably accounting for its many other roles, which are transamidation independent. In this review, we discuss the novel roles of TG2 at the cell surface and in the ECM acting either as a transamidating enzyme or as an extracellular scaffold protein involved in cell adhesion. Such roles include its ability to act as an FN co-receptor for β integrins or in a heterocomplex with FN interacting with the cell surface heparan sulphate proteoglycan syndecan-4 leading to activation of PKCα. These different properties of TG2 involve this protein in various physiological processes, which if not regulated appropriately can also lead to its involvement in a number of diseases. These include metastatic cancer, tissue fibrosis and coeliac disease, thus increasing its attractiveness as both a therapeutic target and diagnostic marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

TG2:

Tissue transglutaminase

TGs:

Transglutaminases

PDI:

Protein disulphide isomerase

TGFβ1:

Transforming growth factor β1

PLC:

Phospholipase C

FN:

Fibronectin

ECM:

Extracellular matrix

HOB:

Human osteoblasts

HSPGs:

Heparan sulphate proteoglycans

ERK1/2:

Extracellular signal-regulated kinase1/2

FITC:

Fluorescein isothiocyanate

FAK:

Focal adhesion kinase

HUVEC:

Human umbilical vein endothelial cells

siRNA:

Small interfering RNA

IL:

Interleukin

NF-κB:

Nuclear factor κB

TNF:

Tumour necrosis factor

TGM2:

TG2 gene

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

PDGFR:

Platelet-derived growth factor receptor

GPR56:

G-protein coupled receptor 56

MMP:

Matrix metalloproteinase

MT1-MMP:

Membrane type1 metalloproteinase

HFDF:

Human foreskin dermal fibroblasts

vSMC:

Vascular smooth muscle cells

OPN:

Osteopontin

BSP:

Bone sialoprotein

SPD:

Spermidine

References

  • Aeschlimann D, Paulsson M, Mann K (1992) Identification of Gln (726) in nidogen as the amine acceptor in transglutaminase-catalyzed cross-linking of laminin–nidogen complexes. J Biol Chem 267:11316–11321

    PubMed  CAS  Google Scholar 

  • Ahn JS, Kim MK, Hahn JH, Park JH, Park KH, Cho BR, Park SB, Kim DJ (2008) Tissue transglutaminase-induced down-regulation of matrix metalloproteinase-9. Biochem Biophys Res Commun 376:743–747

    Article  PubMed  CAS  Google Scholar 

  • Akimov SS, Belkin AM (2001) Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 98:1567–1576

    Article  PubMed  CAS  Google Scholar 

  • Akimov SS, Krylov D, Fleischman LF, Belkin AM (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148:825–838

    Article  PubMed  CAS  Google Scholar 

  • Al-Jallad HF, Nakano Y, Chen JL Y, McMillan E, Lefebvre C, Kaartinen MT (2006) Transglutaminase activity regulates osteoblast differentiation and matrix mineralization in MOT3–E1 osteoblast cultures. Matrix Biol 25:135–148

    Article  PubMed  CAS  Google Scholar 

  • Antonyak MA, Li B, Regan AD, Feng Q, Dusaban SS, Cerione RA (2009) Tissue transglutaminase is an essential participant in the epidermal growth factor-stimulated signaling pathway leading to cancer cell migration and invasion. J Biol Chem 284:17914–17925

    Article  PubMed  CAS  Google Scholar 

  • Balklava Z, Verderio E, Collighan R, Gross S, Adams J, Griffin M (2002) Analysis of tissue transglutaminase function in the migration of Swiss 3T3 fibroblasts: the active-state conformation of the enzyme does not affect cell motility but is important for its secretion. J Biol Chem 277:16567–16575

    Article  PubMed  CAS  Google Scholar 

  • Belkin AM, Akimov SS, Zaritskaya LS, Ratnikov BI, Deryugina EI, Strongin AY (2001) Matrix-dependent proteolysis of surface transglutaminase by membrane-type metalloproteinase regulates cancer cell adhesion and locomotion. J Biol Chem 276:18415–18422

    Article  PubMed  CAS  Google Scholar 

  • Chau DYS, Collighan RJ, Verderio EAM, Addy VL, Griffin M (2005) The cellular response to transglutaminase-cross-linked collagen. Biomaterials 26:6518–6529

    Article  PubMed  CAS  Google Scholar 

  • Chen SH, Lin CY, Lee LT, Chang GD, Lee PP, Hung CC, Kao WT, Tsai PH, Schally AV, Hwang JJ, Lee MT (2010) Up-regulation of fibronectin and tissue transglutaminase promotes cell invasion involving increased association with integrin and MMP expression in A431 cells. Anticancer Res 30:4177–4186

    PubMed  CAS  Google Scholar 

  • Collighan RJ, Griffin M (2009) Transglutaminase 2 cross-linking of matrix proteins: biological significance and medical applications. Amino Acids 36:659–670

    Article  PubMed  CAS  Google Scholar 

  • Dardik R, Inbal A (2006) Complex formation between tissue transglutaminase II (tTG) and vascular endothelial growth factor receptor 2 (VEGFR-2): proposed mechanism for modulation of endothelial cell response to VEGF. Exp Cell Res 312:2973–2982

    Article  PubMed  CAS  Google Scholar 

  • Forsprecher J, Wang Z, Nelea V, Kaartinen MT (2009) Enhanced osteoblast adhesion on transglutaminase 2-crosslinked fibronectin. Amino Acids 36:747–753

    Article  PubMed  CAS  Google Scholar 

  • Gaudry CA, Verderio E, Aeschlimann D, Cox A, Smith C, Griffin M (1999a) Cell surface localization of tissue transglutaminase is dependent on a fibronectin-binding site in its N-terminal beta-sandwich domain. J Biol Chem 274:30707–30714

    Article  PubMed  CAS  Google Scholar 

  • Gaudry CA, Verderio E, Jones RA, Smith C, Griffin M (1999b) Tissue transglutaminase is an important player at the surface of human endothelial cells: evidence for its externalization and its colocalization with the beta(1) integrin. Exp Cell Res 252:104–113

    Article  PubMed  CAS  Google Scholar 

  • Glass CK (1994) Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev 15:391–407

    PubMed  CAS  Google Scholar 

  • Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    Article  PubMed  CAS  Google Scholar 

  • Griffin M, Mongeot A, Collighan R, Saint RE, Jones RA, Coutts IGC, Rathbone DL (2008) Synthesis of potent water-soluble tissue transglutaminase inhibitors. Bioorg Med Chem Lett 18:5559–5562

    Article  PubMed  CAS  Google Scholar 

  • Han BJ, Cho JW, Cho YD, Jeong CK, Kim SY, Lee BI (2010) Crystal structure of human transglutaminase 2 in complex with adenosine triphosphate. Int J Biol Macromol 47:190–195

    Article  PubMed  CAS  Google Scholar 

  • Hand D, Bungay PJ, Elliott BM, Griffin M (1985) Activation of transglutaminase at calcium levels consistent with a role for this enzyme as a calcium receptor protein. Biosci Rep 5:1079–1086

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y (2003) A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 373:793–803

    Article  PubMed  CAS  Google Scholar 

  • Heath DJ, Christian P, Griffin M (2002) Involvement of tissue trans glutaminase in the stabilisation of biomaterial/tissue interfaces important in medical devices. Biomaterials 23:1519–1526

    Article  PubMed  CAS  Google Scholar 

  • Herman JF, Mangala LS, Mehta K (2006) Implications of increased tissue transglutaminase (TG2) expression in drug-resistant breast cancer (MCF-7) cells. Oncogene 25:3049–3058

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Fan J, Yang J, Zhu GZ (2008) Characterization of GPR56 protein and its suppressed expression in human pancreatic cancer cells. Mol Cellular Biochem 308:133–139

    Article  CAS  Google Scholar 

  • Huang LH, Haylor JL, Hau Z, Jones RA, Vickers ME, Wagner B, Griffin M, Saint RE, Coutts IGC, El Nahas AM, Johnson TS (2009) Transglutaminase inhibition ameliorates experimental diabetic nephropathy. Kidney Int 76:383–394

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Haylor JL, Fisher M, Hau Z, El Nahas AM, Griffin M, Johnson TS (2010) Do changes in transglutaminase activity alter latent transforming growth factor beta activation in experimental diabetic nephropathy? Nephrol Dial Transplant 25:3897–3910

    Article  PubMed  CAS  Google Scholar 

  • Janiak A, Zemskov EA, Belkin AM (2006) Cell surface transglutaminase promotes RhoA activation via integrin clustering and suppression of the Src-p190RhoGAP signaling pathway. Mol Biol Cell 17:1606–1619

    Article  PubMed  CAS  Google Scholar 

  • Johnson KA, Terkeltaub R (2005) External GTP-bound transglutaminase 2 is a molecular switch for chondrocyte hypertrophic differentiation and calcification. J Biol Chem 280:15004–15012

    Article  PubMed  CAS  Google Scholar 

  • Johnson TS, El-Koraie AF, Skill NJ, Baddour NM, El Nahas AM, Njloma M, Adam AG, Griffin M (2003) Tissue transglutaminase and the progression of human renal scarring. J Am Soc Nephrol 14:2052–2062

    Article  PubMed  CAS  Google Scholar 

  • Jones RA, Kotsakis P, Johnson TS, Chau DY, Ali S, Melino G, Griffin M (2006) Matrix changes induced by transglutaminase 2 lead to inhibition of angiogenesis and tumor growth. Cell Death Differ 13:1442–1453

    Article  PubMed  CAS  Google Scholar 

  • Kang SK, Yi KS, Kwon NS, Park KH, Kim UH, Baek KJ, Im MJ (2004) Alpha(1B)-adrenoceptor signaling and cell motility—GTPase function of G(h)/transglutaminase 2 inhibits cell migration through interaction with cytoplasmic tail of integrin alpha subunits. J Biol Chem 279:36593–36600

    Article  PubMed  CAS  Google Scholar 

  • Kausar T, Sharma R, Hasan MR, Tripathi SC, Saraya A, Chattopadhyay TK, Gupta SD, Ralhan R (2011) Clinical significance of GPR56, transglutaminase 2, and NF-kappaB in esophageal squamous cell carcinoma. Cancer Invest 29:42–48

    Article  PubMed  CAS  Google Scholar 

  • Kiraly R, Csosz E, Kurtan T, Antus S, Szigeti K, Simon-Vecsei Z, Korponay-Szabo IR, Keresztessy Z, Fesus L (2009) Functional significance of five noncanonical Ca-binding sites of human transglutaminase 2 characterized by site-directed mutagenesis. Febs J 276:7083–7096

    Article  PubMed  CAS  Google Scholar 

  • Kleman JP, Aeschlimann D, Paulsson M, van der Rest M (1995) Transglutaminase-catalyzed cross-linking of fibrils of collagen V/XI in A204 rhabdomyosarcoma cells. Biochemistry 34:13768–13775

    Article  PubMed  CAS  Google Scholar 

  • Kotsakis P, Wang Z, Collighan RJ, Griffin M (2010) The role of tissue transglutaminase (TG2) in regulating the tumour progression of the mouse colon carcinoma CT26. Amino Acids (In press)

  • Kumar A, Xu J, Brady S, Gao H, Yu D, Reuben J, Mehta K (2010) Tissue transglutaminase promotes drug resistance and invasion by inducing mesenchymal transition in mammary epithelial cells. PLoS One 5:e13390

    Article  PubMed  Google Scholar 

  • Kuncio GS, Tsyganskaya M, Zhu J, Liu SL, Zern MA (1996) TNF-alpha modulates expression of the tissue transglutaminase gene in human HEPG2 cells. Hepatology 24: 813

    Google Scholar 

  • Lai TS, Slaughter TF, Peoples KA, Hettasch JM, Greenberg CS (1998) Regulation of human tissue transglutaminase function by magnesium–nucleotide complexes. Identification of distinct binding sites for Mg-GTP and Mg-ATP. J Biol Chem 273:1776–1781

    Article  PubMed  CAS  Google Scholar 

  • Lai TS, Hausladen A, Slaughter TF, Eu JP, Stamler JS, Greenberg CS (2001) Calcium regulates S-nitrosylation, denitrosylation, and activity of tissue transglutaminase. Biochemistry 40:4904–4910

    Article  PubMed  CAS  Google Scholar 

  • Lorand L, Radek JT, Jeong JM, Murthy SNP, Ingham KC (1993) Affinity of human red-cell transglutaminase for a 42 k gelatin- binding fragment of human plasma fibronectin. Faseb J 7:A1280

    Google Scholar 

  • Mangala LS, Mehta K (2005) Tissue transglutaminase (TG2) in cancer biology. Prog Exp Tumor Res 38:125–138

    Article  PubMed  CAS  Google Scholar 

  • Mangala LS, Fok JY, Zorrilla-Calancha IR, Verma A, Mehta K (2007) Tissue transglutaminase expression promotes cell attachment, invasion and survival in breast cancer cells. Oncogene 26:2459–2470

    Article  PubMed  CAS  Google Scholar 

  • Mehta K, McQueen T, Neamati N, Collins S, Andreeff M (1996) Activation of retinoid receptors RAR alpha and RXR alpha induces differentiation and apoptosis, respectively, in HL-60 cells. Cell Growth Differ 7:179–186

    PubMed  CAS  Google Scholar 

  • Mehta K, Fok JY, Mangala LS (2006) Tissue transglutaminase: from biological glue to cell survival cues. Front Biosci 11:173–185

    Article  PubMed  Google Scholar 

  • Mehta K, Kumar A, Kim HI (2010) Transglutaminase 2: a multi-tasking protein in the complex circuitry of inflammation and cancer. Biochem Pharmacol 80:1921–1929

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Murphy LJ (2004) Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 279:23863–23868

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Murphy LJ (2006) The p53 oncoprotein is a substrate for tissue transglutaminase kinase activity. Biochem Biophys Res Comm 339:726–730

    Article  PubMed  CAS  Google Scholar 

  • Mycek MJ, Clarke DD, Neidle A, Waelsch H (1959) Amine incorporation into insulin as catalyzed by transglutaminase. Arch Biochem Biophys 84:528–540

    Article  PubMed  CAS  Google Scholar 

  • Nadalutti C, Viiri KM, Kaukinen K, Maki M, Lindfors K (2011) Extracellular transglutaminase 2 has a role in cell adhesion, whereas intracellular transglutaminase 2 is involved in regulation of endothelial cell proliferation and apoptosis. Cell Prolif 44:49–58

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Forsprecher J, Kaartinen MT (2010) Regulation of ATPase activity of transglutaminase 2 by MT1-MMP: implications for mineralization of MC3T3–E1 osteoblast cultures. J Cell Physiol 223:260–269

    PubMed  CAS  Google Scholar 

  • Nelea V, Nakano Y, Kaartinen MT (2008) Size distribution and molecular associations of plasma fibronectin and fibronectin crosslinked by transglutaminase 2. Protein J 27:223–233

    Article  PubMed  CAS  Google Scholar 

  • Peng XJ, Zhang YH, Zhang HF, Graner S, Williams JF, Levitt ML, Lokshin A (1999) Interaction of tissue transglutaminase with nuclear transport protein importin-alpha 3. FEBS Lett 446:35–39

    Google Scholar 

  • Quan G, Choi JY, Lee DS, Lee SC (2005) TGF-beta up-regulates transglutaminase two and fibronectin in dermal fibroblasts: a possible mechanism for the stabilization of tissue inflammation. Arch Dermatol Res 297:84–90

    Article  PubMed  CAS  Google Scholar 

  • Santhanam L, Tuday EC, Webb AK, Dowzicky P, Kim JH, Oh YJ, Sikka G, Kuo M, Halushka MK, Macgregor AM et al (2010) Decreased S-nitrosylation of tissue transglutaminase contributes to age-related increases in vascular stiffness. Circ Res 107:117–125

    Article  PubMed  CAS  Google Scholar 

  • Scarpellini A, Germack R, Lortat-Jacob H, Muramtsu T, Johnson TS, Billett E, Verderio EA (2009) Heparan sulphate proteoglycans are receptors for the cell-surface trafficking and biological activity of transglutaminase-2. J Biol Chem 284:18411–18423

    Article  PubMed  CAS  Google Scholar 

  • Siegel M, Khosla C (2007) Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol Ther 115:232–245

    Article  PubMed  CAS  Google Scholar 

  • Smethurst PA, Griffin M (1996) Measurement of tissue transglutaminase activity in a permeabilized cell system: its regulation by Ca2+ and nucleotides. Biochem J 313:803–808

    PubMed  CAS  Google Scholar 

  • Sollid LM, Khosla C (2005) Future therapeutic options for celiac disease. Nat Clin Pract Gastroenterol Hepatol 2:140–147

    Article  PubMed  CAS  Google Scholar 

  • Spurlin TA, Bhadriraju K, Chung KH, Tona A, Plant AL (2009) The treatment of collagen fibrils by tissue transglutaminase to promote vascular smooth muscle cell contractile signaling. Biomaterials 30:5486–5496

    Article  PubMed  CAS  Google Scholar 

  • Stamnaes J, Pinkas DM, Fleckenstein B, Khosla C, Sollid LM (2010) Redox regulation of transglutaminase 2 activity. J Biol Chem 285:25402–25409

    Article  PubMed  CAS  Google Scholar 

  • Stephens P, Grenard P, Aeschlimann P, Langley M, Blain E, Errington R, Kipling D, Thomas D, Aeschlimann D (2004) Crosslinking and G-protein functions of transglutaminase 2 contribute differentially to fibroblast wound healing responses. J Cell Sci 117:3389–3403

    Article  PubMed  CAS  Google Scholar 

  • Suto N, Ikura K, Sasaki R (1993) Expression induced by interleukin-6 of tissue-type transglutaminase in human hepatoblastoma Hepg2 cells. J Biol Chem 268:7469–7473

    PubMed  CAS  Google Scholar 

  • Tanaka K, Yokosaki Y, Higashikawa F, Saito Y, Eboshida A, Ochi M (2007) The integrin alpha 5 beta 1 regulates chondrocyte hypertrophic differentiation induced by GTP-bound transglutaminase 2. Matrix Biol 26:409–418

    Article  PubMed  CAS  Google Scholar 

  • Tatsukawa H, Fukaya Y, Frampton G, Martinez-Fuentes A, Suzuki K, Kuo TF, Nagatsuma K, Shimokado K, Okuno M, Wu J et al (2009) Role of ransglutaminase 2 in liver injury via cross-linking and silencing of transcription factor Sp1. Gastroenterology 136:1783–1795

    Article  PubMed  CAS  Google Scholar 

  • Telci D, Wang Z, Li X, Verderio EA, Humphries MJ, Baccarini M, Basaga H, Griffin M (2008) Fibronectin-tissue transglutaminase matrix rescues RGD-impaired cell adhesion through syndecan-4 and beta1 integrin co-signaling. J Biol Chem 283:20937–20947

    Article  PubMed  CAS  Google Scholar 

  • Telci D, Collighan RJ, Basaga H, Griffin M (2009) Increased TG2 expression can result in induction of transforming growth factor beta 1, causing increased synthesis and deposition of matrix proteins, which can be regulated by nitric oxide. J Biol Chem 284:29547–29558

    Article  PubMed  CAS  Google Scholar 

  • Toth B, Sarang Z, Vereb G, Zhang AL, Tanaka S, Melino G, Fesus L, Szondy Z (2009) Over-expression of integrin beta 3 can partially overcome the defect of integrin beta 3 signaling in transglutaminase 2 null macrophages. Imm Lett 126:22–28

    Article  CAS  Google Scholar 

  • Van Herck JL, Schrijvers DM, De Meyer GR, Martinet W, Van Hove CE, Bult H, Vrints CJ, Herman AG (2010) Transglutaminase 2 deficiency decreases plaque fibrosis and increases plaque inflammation in apolipoprotein-e-deficient mice. J Vascular Res 47:231–240

    Article  Google Scholar 

  • Verderio E, Nicholas B, Gross S, Griffin M (1998) Regulated expression of tissue transglutaminase in Swiss 3T3 fibroblasts: effects on the processing of fibronectin, cell attachment, and cell death. Exp Cell Res 239:119–138

    Article  PubMed  CAS  Google Scholar 

  • Verderio EA, Telci D, Okoye A, Melino G, Griffin M (2003) A novel RGD-independent cell adhesion pathway mediated by fibronectin-bound tissue transglutaminase rescues cells from anoikis. J Biol Chem 278:42604–42614

    Article  PubMed  CAS  Google Scholar 

  • Verderio EA, Johnson T, Griffin M (2004) Tissue transglutaminase in normal and abnormal wound healing: review article. Amino Acids 26:387–404

    Article  PubMed  CAS  Google Scholar 

  • Verma A, Wang H, Manavathi B, Fok JY, Mann AP, Kumar R, Mehta K (2006) Increased expression of tissue transglutaminase in pancreatic ductal adenocarcinoma and its implications in drug resistance and metastasis. Cancer Res 66:10525–10533

    Article  PubMed  CAS  Google Scholar 

  • Verma A, Guha S, Diagaradjane P, Kunnumakkara AB, Sanguino AM, Lopez-Berestein G, Sood AK, Aggarwal BB, Krishnan S, Gelovani JG, Mehta K (2008) Therapeutic significance of elevated tissue transglutaminase expression in pancreatic cancer. Clinical Cancer Res 14:2476–2483

    Article  CAS  Google Scholar 

  • Wang Z, Collighan RJ, Gross SR, Danen EH, Orend G, Telci D, Griffin M (2010) RGD-independent cell adhesion via a tissue transglutaminase–fibronectin matrix promotes fibronectin fibril deposition and requires syndecan-4/2 and {alpha}5{beta}1 integrin co-signaling. J Biol Chem 285:40212–40229

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Telci D, Griffin M (2011) Importance of syndecan-4 and syndecan-2 in osteoblast cell adhesion and survival mediated by a tissue transglutaminase–fibronectin complex. Exp Cell Res 317:367–381

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Begum S, Hearn JD, Hynes RO (2006) GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci USA 103:9023–9028

    Article  PubMed  CAS  Google Scholar 

  • Yuan L, Choi KH, Khosla C, Zheng X, Higashikubo R, Chicoine MR, Rich KM (2005) Tissue transglutaminase 2 inhibition promotes cell death and chemosensitivity in glioblastomas. Mol Cancer Therapeut 4:1293–1302

    Article  CAS  Google Scholar 

  • Yuan L, Siegel M, Choi K, Khosla C, Miller CR, Jackson EN, Piwnica-Worms D, Rich KM (2007) Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy. Oncogene 26:2563–2573

    Article  PubMed  CAS  Google Scholar 

  • Zemskov EA, Loukinova E, Mikhailenko I, Coleman RA, Strickland DK, Belkin AM (2009) Regulation of platelet-derived growth factor receptor function by integrin-associated cell surface transglutaminase. J Biol Chem 284:16693–16703

    Article  PubMed  CAS  Google Scholar 

  • Zemskov EA, Mikhailenko I, Hsia RC, Zaritskaya L, Belkin AM (2011) Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes. PLoS One 6:e19414

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Griffin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Griffin, M. TG2, a novel extracellular protein with multiple functions. Amino Acids 42, 939–949 (2012). https://doi.org/10.1007/s00726-011-1008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1008-x

Keywords

Navigation