Amino Acids

, Volume 42, Issue 2–3, pp 867–876 | Cite as

Constitutively and highly expressed Oryza sativa polyamine oxidases localize in peroxisomes and catalyze polyamine back conversion

  • Yusuke Ono
  • Dong Wook Kim
  • Kanako Watanabe
  • Ayano Sasaki
  • Masaru Niitsu
  • Thomas Berberich
  • Tomonobu KusanoEmail author
  • Yoshihiro TakahashiEmail author
Original Article


Polyamine oxidases (PAOs) are FAD-dependent enzymes involved in polyamine (PA) catabolism. Recent studies have revealed that plant PAOs are not only active in the terminal catabolism of PAs as demonstrated for maize apoplastic PAO but also in a polyamine back-conversion pathway as shown for most Arabidopsis PAOs. We have characterized Oryza sativa PAOs at molecular and biochemical levels. The rice genome contains 7 PAO isoforms that are termed OsPAO1 to OsPAO7. Of the seven PAOs, OsPAO3, OsPAO4, and OsPAO5 transcripts were most abundant in 2-week-old seedlings and mature plants, while OsPAO1, OsPAO2, OsPAO6, and OsPAO7 were expressed at very low levels with different tissue specificities. The more abundantly expressed PAOs—OsPAO3, OsPAO4, and OsPAO5—were cloned, and their gene products were produced in Escherichia coli. The enzymatic activities of the purified OsPAO3 to OsPAO5 proteins were examined. OsPAO3 favored spermidine (Spd) as substrate followed by thermospermine (T-Spm) and spermine (Spm) and showed a full PA back-conversion activity. OsPAO4 substrate specificity was similar to that of OsPAO5 preferring Spm and T-Spm but not Spd. Those enzymes also converted Spm and T-Spm to Spd, again indicative of PA back-conversion activities. Lastly, we show that OsPAO3, OsPAO4, and OsPAO5 are localized in peroxisomes. Together, these data revealed that constitutively and highly expressed O. sativa PAOs are localized in peroxisomes and catalyze PA back-conversion processes.


Oryza sativa Peroxisome Polyamine Polyamine oxidase Substrate specificity Tissue specificity 



Amine oxidase




Arabidopsis thaliana polyamine oxidase


Day(s) after sowing


Flavin adenine dinucleotide


Green fluorescent protein


Barley polyamine oxidase










Polyamine oxidase


Polymerase chain reaction


Oryza sativa polyamine oxidase


Peroxisomal targeting signal










Maize polyamine oxidase



We thank to Drs. K. A. Roubelakis-Angelakis and N. -H. Chua for kindly providing mCherry-AtPAO3 and pGFP2 plasmids, respectively. We also thank to Dr. E. Agostinelli and the anonymous reviewer(s) who contributed to improving this manuscript. This work was supported in part by Grant-in-Aids from the Japan Society for the Promotion of Science (JSPS) to TK (21380063) and YT (21780087, 23780345), and by the research funding program “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts to TB.

Supplementary material

726_2011_1002_MOESM1_ESM.doc (36 kb)
Supplementary material 1 (DOC 36 kb)


  1. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249PubMedCrossRefGoogle Scholar
  2. Angelini R, Tisi A, Rea G, Chen MM, Botta M, Federico R, Cona A (2008) Involvement of polyamine oxidase in wound healing. Plant Physiol 146:162–177PubMedCrossRefGoogle Scholar
  3. Babujee L, Wurtz V, Ma C, Lueder F, Soni P, van Dorsselaer A, Reumann S (2010) The proteome map of spinach leaf peroxisomes indicates partial compartmentalization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes. J Exp Bot 61:1441–1453PubMedCrossRefGoogle Scholar
  4. Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317PubMedCrossRefGoogle Scholar
  5. Bassard J-E, Ullman P, Bernier F, Werck-Reichhart D (2010) Phenolamides: bridging polyamines to the phenolic metabolism. Phytochemistry 71:1808–1824PubMedCrossRefGoogle Scholar
  6. Binda C, Coda A, Angelini R, Federico R, Ascenzi P, Mattevi A (1999) A 30-Å-long U-shaped catalytic tunnel in the crystal structure of polyamine oxidase. Structure 7:265–276PubMedCrossRefGoogle Scholar
  7. Cervelli M, Tavladoraki P, Di Agostino S, Angelini R, Federico R, Mariottini P (2000) Isolation and characterization of three polyamine oxidase genes from Zea mays. Plant Physiol Biochem 38:667–677CrossRefGoogle Scholar
  8. Cervelli M, Cona A, Angelini R, Polticelli F, Federico R, Mariottini P (2001) A barley polyamine oxidase isoform with distinct structural features and subcellular localization. Eur J Biochem 268:3816–3830PubMedCrossRefGoogle Scholar
  9. Cervelli M, Di Caro O, Di Penta A, Angelini R, Federico R, Vitale A, Mariottini P (2004) A novel C-terminal sequence from barley polyamine oxidase is a vacuolar sorting signal. Plant J 40:410–418PubMedCrossRefGoogle Scholar
  10. Cervelli M, Bianchi M, Cona A, Crosatti C, Stanca M, Angelini R, Federico R, Mariottini P (2006) Barley polyaine oxidase isoforms 1 and 2, a peculiar case of gene duplication. FEBS J 38:667–677Google Scholar
  11. Cohen SS (1998) A guide to the polyamines. Oxford University Press, OxfordGoogle Scholar
  12. Cona A, Moreno S, Cenci F, Federico R, Angelini R (2005) Cellular redistribution of flavin-containing polyamine oxidase in differentiating root and mesocotyl of Zea mays L. seedlings. Planta 221:265–276PubMedCrossRefGoogle Scholar
  13. Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88PubMedCrossRefGoogle Scholar
  14. Federico R, Angelini R (1991) Polyamine catabolism in plants. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 41–56Google Scholar
  15. Fincato P, Moschou PN, Spedaletti V, Tavazza R, Angelini R, Federico R, Roubelakis-Angelakis KA, Tavladoraki P (2011) Functional diversity inside the Arabidopsis polyamine oxidase gene family. J Exp Bot 62:1155–1168PubMedCrossRefGoogle Scholar
  16. Fuell C, Elliot KA, Hanfrey CC, Franceschetti M, Michael AJ (2010) Polyamine biosynthetic diversity in plants and algae. Plant Physiol Biochem 48:513–520PubMedCrossRefGoogle Scholar
  17. Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45PubMedCrossRefGoogle Scholar
  18. Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y (2000) ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J 19:4248–4256PubMedCrossRefGoogle Scholar
  19. Hanzawa Y, Imai A, Michael AJ, Komeda Y, Takahashi T (2002) Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Lett 527:176–180PubMedCrossRefGoogle Scholar
  20. Kakehi J, Kuwashiro Y, Niitsu M, Takahashi T (2008) Thermospermine is required for stem elongation in Arabidopsis thaliana. Plant Cell Physiol 49:1342–1349PubMedCrossRefGoogle Scholar
  21. Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol 49:1272–1282PubMedCrossRefGoogle Scholar
  22. Knott JM, Romer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581:3081–3086PubMedCrossRefGoogle Scholar
  23. Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9:299–306PubMedCrossRefGoogle Scholar
  24. Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381PubMedCrossRefGoogle Scholar
  25. Lim TS, Chitra TR, Han P, Pua EC, Yu H (2006) Cloning and characterization of Arabidopsis and Brassica juncea flavin-containing amine oxidases. J Exp Bot 57:4155–4169PubMedCrossRefGoogle Scholar
  26. Mattoo AK, Minocha SC, Minocha R, Handa AK (2010) Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putresciner versus higher polyamines spermidine and spermine. Amino Acids 38:405–413PubMedCrossRefGoogle Scholar
  27. Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA (2008) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back- conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857PubMedCrossRefGoogle Scholar
  28. Naka Y, Watanabe K, Sagor GHM, Niitsu M, Pillai A, Kusano T, Takahashi Y (2010) Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiol Biochem 48:527–533PubMedCrossRefGoogle Scholar
  29. Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N, Lüder F, Weckwerth W, Jahn O (2007) Proteome analysis of Arabidopsis leaf peroxisomes revels novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19:3170–3193PubMedCrossRefGoogle Scholar
  30. Seiler N (2004) Catabolism of polyamines. Amino Acids 26:217–233PubMedGoogle Scholar
  31. Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49:81–99PubMedGoogle Scholar
  32. Takahashi Y, Cong R, Sagor GHM, Niitsu M, Berberich T, Kusano T (2010) Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. Plant Cell Rep 29:955–965PubMedCrossRefGoogle Scholar
  33. Tassoni A, Van Buuren M, Franceschetti M, Fornale IS, Bagni N (2000) Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol Biochem 38:383–393Google Scholar
  34. Tavladoraki P, Shinina ME, Cecconi F, Di Agostino S, Manera F, Rea G, Mariottini P, Federico R, Angelini R (1998) Maize polyamine oxidase: primary structure from protein and cDNA sequencing. FEBS Lett 426:62–66PubMedCrossRefGoogle Scholar
  35. Tavladoraki P, Rossi MN, Saccuti G, Perez-Amador MA, Polticelli F, Angelini R, Federico R (2006) Heterologous expression and biochemical characterization of a polyamine oxidase from Arabidopsis involved in polyamine back conversion. Plant Physiol 141:1519–1532PubMedCrossRefGoogle Scholar
  36. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680PubMedCrossRefGoogle Scholar
  37. Vujcic S, Diegelman P, Bacchi CJ, Kramer DL, Porter CW (2002) Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin. Biochem J 367:665–675PubMedCrossRefGoogle Scholar
  38. Vujcic S, Liang P, Diegelman P, Kramer DL, Porter CW (2003) Genomic identification and biochemical characterization of the mammalian polyamine oxidase involved in polyamine back-conversion. Biochem J 370:19–28PubMedCrossRefGoogle Scholar
  39. Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14PubMedCrossRefGoogle Scholar
  40. Wang Y, Devereux W, Woster PM, Stewart TM, Hacker A, Casero RA Jr (2001) Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Res 61:5370–5373PubMedGoogle Scholar
  41. Wu T, Yankovskaya V, McIntire WS (2003) Cloning, sequencing, and heterologous expression of the murine peroxisomal flavoprotein, N 1-acetylated polyamine oxidase. J Biol Chem 278:20514–20525PubMedCrossRefGoogle Scholar
  42. Yoda H, Hiroi Y, Sano H (2006) Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiol 142:193–206PubMedCrossRefGoogle Scholar
  43. Zolman BK, Bartel B (2004) An Arabidopsis indole-3-butyric acid-response mutant defective in PEROXIN6, an apparent ATPase implicated in peroxisomal function. Proc Natl Acad Sci U S A 101:1786–1791PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yusuke Ono
    • 1
  • Dong Wook Kim
    • 1
  • Kanako Watanabe
    • 1
  • Ayano Sasaki
    • 1
  • Masaru Niitsu
    • 2
  • Thomas Berberich
    • 3
  • Tomonobu Kusano
    • 1
    Email author
  • Yoshihiro Takahashi
    • 1
    Email author
  1. 1.Graduate School of Life SciencesTohoku UniversitySendai, MiyagiJapan
  2. 2.Faculty of Pharmaceutical Sciences, Josai UniversitySakado, SaitamaJapan
  3. 3.Biodiversity and Climate Research Center FrankfurtFrankfurtGermany

Personalised recommendations