Skip to main content
Log in

Modification of secondary head-forming activity of microinjected ∆β-catenin mRNA by co-injected spermine and spermidine in Xenopus early embryos

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Polyamines are essential for cell growth and differentiation. In Xenopus early embryos, per embryo level of spermine is extremely low as compared with that of spermidine. To disclose the possible function of polyamines in Xenopus early embryos, we tested the effect of co-injection of spermine and spermidine on the functioning of exogenously microinjected in vitro-synthesized, ∆β-catenin mRNA which is known to induce a secondary head after being microinjected into a ventral vegetal blastomere in 8-celled Xenopus embryos. Microinjection of ∆β-catenin mRNA in fact induced a secondary axis with a secondary head, and co-injection of spermine or spermidine suppresses induction of the secondary head and secondary axis without drastic effects like induction of immediate cell death or execution of apoptosis at blastula stage. The inhibitory effects were dosage dependent, and at lower doses the inhibition was mainly on secondary head formation rather than on secondary axis formation. We performed similar experiments using GFP mRNA and confirmed that expression of GFP mRNA was also suppressed by co-injection of spermine. We mixed ∆β-catenin mRNA with different amounts of spermine and performed electrophoresis on agarose gels, with a finding that the prior mixing greatly suppressed mRNA migration. These results suggest that an excess amount of spermine as well as spermidine exerts inhibitory effects on mRNA translation, and that the inhibition may be due to direct binding of polyamines to mRNA and a reduction of negative charges on mRNA molecules that might also induce the formation of cross link-like networks among mRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

MBT:

Midblastula transition

SAMDC:

S-adenosylmethionine decarboxylase

ODC:

Ornithine decarboxylase

SAM:

S-adenosylmethionine

GFP mRNA:

Green fluorescent protein mRNA

FITC-dextran:

Fluorescein isothiocyanate-dextran

PCR:

Polymerase chain reaction

MBS:

Modified Barth’s solution

References

  • Bassez T, Paris J, Omilli F, Dorel C, Osborne B (1990) Post-transcriptional regulation of ornithine decarboxylase in Xenopus laevis oocytes. Development 110:955–962

    PubMed  CAS  Google Scholar 

  • Basu HS, Smirnov IV, Peng HP, Tiffany K, Jackson V (1997) Effects of spermine and its cytotoxic analogs on nucleosome formation on topologically stressed DNA in vitro. Eur J Biochem 243:247–258

    Article  PubMed  CAS  Google Scholar 

  • Brannon M, Gomperts M, Sumoy L, Moon RT, Kimelman D (1997) A β-catenin/Xtcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 11:2359–2370

    Article  PubMed  CAS  Google Scholar 

  • Davis RH, Morris DR, Coffino P (1992) Sequestered end products and enzyme regulation: the case of ornithine decarboxylase. Microbiol Rev 56:280–290

    PubMed  CAS  Google Scholar 

  • Fu Y, Hosokawa K, Shiokawa K (1989) Expression of circular and linearized bacterial chloramphenicol acetyltransferase genes with or without viral promoters after injection into fertilized eggs, unfertilized eggs and oocytes of Xenopus laevis. Roux’s Arch Dev Biol 198:148–156

    Article  CAS  Google Scholar 

  • Guirard BM, Snell EE (1964) Effect of polyamine structure on growth stimulation and spermine and spermidine content of lactic acid bacteria. J Bact 88:72–80

    PubMed  CAS  Google Scholar 

  • Guo X, Rao JN, Liu L, Zou T, Keledjian KM, Boneva D, Marasa BS, Wang J-Y (2005) Polyamines are necessary for synthesis and stability of occluding protein in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 288:G1159–G1169

    Article  PubMed  CAS  Google Scholar 

  • Heasman J (2006) Patterning the early Xenopus embryo. Development 133:1205–1217

    Article  PubMed  CAS  Google Scholar 

  • Heby O (1981) Role of polyamines in the control of cell proliferation and differentiation. Differentiation 19:1–26

    Article  PubMed  CAS  Google Scholar 

  • Heby O, Persson L (1990) Molecular gentics of polyamine synthesis in eukaryotic cells. Trends Biochem 15:153–158

    Article  CAS  Google Scholar 

  • Holwill S, Heasman J, Crawley CR, Wylie C (1987) Axis and germline deficiencies caused by UV irradiation of Xenopus oocytes cultured in vitro. Development 100:735–743

    Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51

    Article  PubMed  CAS  Google Scholar 

  • Kai M, Higo T, Yokoska J, Kaito C, Kajita E, Fukamachi H, Takayama E, Igarashi K, Shiokawa K (2000) Overexpression of S-adenosylmethionine decarboxylase (SAMDC) activates the maternal program of apoptosis shortly after MBT in Xenopus embryos. Int J Dev Biol 44:507–510

    PubMed  CAS  Google Scholar 

  • Kai M, Kaito C, Fukamachi H, Higo T, Takayama E, Hara H, Ohya Y, Igarashi K, Shiokawa K (2003) Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus embryos activates maternal program of apoptosis as a “fail-safe” mechanism of early embryogesis. Cell Res 13:147–158

    Article  PubMed  CAS  Google Scholar 

  • Kajita E, Wakiyama M, Miura K-I, Mizumoto K, Oka T, Komuro I, Miyata T, Yatsuki H, Hori K, Shiokawa K (2000) Isolation and characterization of Xenopus laevis aldolase B cDNA and expression patterns of aldolase A, B and C genes in adult tissues, oocytes and embryos of Xenopus laevis. Biochim Biophys Acta 1493:101–118

    PubMed  CAS  Google Scholar 

  • Kofron M, Klein P, Zhang F, Houston DW, Schaible K, Wylie C, Heasman J (2001) The role of maternal axis in patterning the Xenopus embryo. Dev Biol 237:183–201

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Tashiro K, Fujii G, Asano M, Miyoshi R, Yamada R, Muramatsu M, Shiokawa K (1991) Activin receptor mRNA is expressed early in Xenopus embryogenesis and the level of the expression affects the body axis formation. Biochem Biophys Res Commun 181:684–690

    Article  PubMed  CAS  Google Scholar 

  • McMahon AP, Moon RT (1989) Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58:1075–1084

    Article  PubMed  CAS  Google Scholar 

  • Nakakura N, Miura T, Yamana K, Ito A, Shiokawa K (1987) Synthesis of heterogeneous mRNA-like RNA and low-molecular-weight RNA before the midblastula transition in embryos of Xenopus laevis. Dev Biol 123:421–429

    Article  PubMed  CAS  Google Scholar 

  • Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: I characterization and timing of cellular changes at the midblastula stage. Cell 30:675–686

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). Elsevier, Amsterdam

    Google Scholar 

  • Osborne HB, Mulner-Lorillon O, Marot J, Belle R (1989) Polyamine levels during Xenopus laevis oogenesis: a role in oocyte competence to meiotic resumption. Biochem Biophys Res Commun 158:520–526

    Article  PubMed  CAS  Google Scholar 

  • Osborne HB, Duval C, Ghoda L, Omilli F, Bassez T, Coffino P (1991) Expression and post-tanslational regulation of ornithine decarboxylase during early Xenopus development. Eur J Biochem 202:575–581

    Article  PubMed  CAS  Google Scholar 

  • Osborne HB, Cormier P, Lorillon O, Maniey D, Belle R (1993) An appraisal of the developmental importance of polyamine changes in early Xenopus embryos. Int J Dev Biol 37:615–618

    PubMed  CAS  Google Scholar 

  • Pajunen A, Crozat A, Jaenne OA, Ihalainen R, Laitinen PH, Stanley B, Madhubala R, Pegg AE (1988) Structure and regulation of mammalian S-adenosylmethionine decarboxylase. J Biol Chem 263:17040–17049

    PubMed  CAS  Google Scholar 

  • Peng HF, Jackson V (2000) In vitro studies on the maintenance of transcription-induced stress by histones and polyamines. J Biol Chem 275:657–668

    Article  PubMed  CAS  Google Scholar 

  • Pollard KJ, Samuels ML, Crowley KA, Hansen JC, Peterson CL (1999) Functional interaction between GCN5 and polyamines: a new role for core histone acetylation. EMBO J 18:5622–5633

    Article  PubMed  CAS  Google Scholar 

  • Rosander U, Holm I, Grahn B, Lovtrup-Rein H, Mattsson M, Heby O (1995) Down-regulation of ornithine decarboxylase by an increased degradation of the enzyme during gastrulation of Xenopus laevis. Biochim Biophys Acta 1264:121–128

    PubMed  Google Scholar 

  • Scharf SR, Gerhart JC (1980) Determination of the dorsal-ventral axis in eggs of Xenopus laevis: complete rescue of UV-impaired eggs by oblique orientation before first cleavage. Dev Biol 79:181–198

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Steinbeisser H, Warga RM, Hausen P (1996) β-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57:191–198

    Article  PubMed  CAS  Google Scholar 

  • Schohl A, Fagotto F (2002) β-catenin, MAPK and Smad signaling during early Xenopus development. Development 129:37–52

    PubMed  CAS  Google Scholar 

  • Shibata M, Shinga J, Yasuhiko Y, Kai M, Miura K-I, Shimogori T, Kashiwagi K, Igarashi K, Shiokawa K (1998) Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in early Xenopus embryos induces cell dissociation and inhibits transition from the blastula to gastrula stage. Int J Dev Biol 42:675–686

    PubMed  CAS  Google Scholar 

  • Shinga J, Kashiwagi K, Tashiro K, Igarashi K, Shiokawa K (1996) Maternal and zygotic expression of mRNA for S-adenosylmethionine decarboxylase and its relevance to the unique polyamine composition in Xenopus oocytes and embryos. Biochim Biophys Acta 1308:31–40

    PubMed  Google Scholar 

  • Shiokawa K, Yamana K (1967) Pattern of RNA synthesis in isolated cells of Xenopus laevis embryos. Dev Biol 16:368–388

    Article  PubMed  CAS  Google Scholar 

  • Shiokawa K, Misumi Y, Tashiro K, Nakakura N, Yamana K, Oh-uchida M (1989) Changes in the patterns of RNA synthesis in early embryogenesis of Xenopus laevis. Cell Differ Dev 28:17–26

    Article  PubMed  CAS  Google Scholar 

  • Shiokawa K, Kurashima R, Shinga J (1994) Temporal control of gene expression from endogenous and exogenously-introduced DNAs in early embryogenesis of Xenopus laevis. Int J Dev Biol 38:249–255

    PubMed  CAS  Google Scholar 

  • Shiokawa K, Kai M, Higo T, Kaito C, Yokoska J, Yasuhiko Y, Kajita E, Nagano M, Yamada Y, Shibata M, Muto T, Shinga J, Hara H, Takayama E, Fukamachi H, Yaoita Y, Igarashi K (2000) Maternal program of apoptosis activated shortly after midblastula transition by overexpression of S-adenosylmethionine decarboxylase in Xenopus early embryos. Comp Biochem Physiol B 126:149–155

    Article  PubMed  CAS  Google Scholar 

  • Shiokawa K, Takayama E, Higo T, Kuroyanagi S, Kaito C, Hara H, Kajitani M, Sekimizu K, Tadakuma T, Miura K-I, Igarashi K, Yaoita Y (2005) Occurrence of pre-MBT synthesis of caspase-8 mRNA and activation of caspase-8 prior to execution of SAMDC (S-adenosylmethionine decarboxylase)-induced, but not p53-induced, apoptosis in Xenopus late blastulae. Biochem Biophys Res Commun 336:682–691

    Article  PubMed  CAS  Google Scholar 

  • Shiokawa K, Aso M, Kondo T, Uchiyama H, Kuroyanagi S, Takai J-I, Takahashi S, Kajitani M, Kaito C, Sekimisu K, Takayama E, Igarashi K, Hara H (2008) Gene expression in pre-MBT embryos and activation of maternally-inherited program of apoptosis to be executed at around MBT as a fail-safe mechanism in Xenopus early embryogenesis. Gene Regul Syst Biol 2:1–19

    Google Scholar 

  • Shiokawa K, Aso M, Kondo T, Takai J-I, Yoshida J, Mishina T, Fuchimukai K, Ogasawara T, Kariya T, Tashiro K, Igarashi K (2010) Effects of S-adenosylmethionine decaroboxylase, polyamines, amino acids, and weak bases (amines and ammonia) on development and ribosomal RNA synthesis in Xenopus embryos. Amino Acids 2010:439–449

    Article  Google Scholar 

  • Sunkara PS, Wright DA, Nishioka K (1981) An essential role for putrescine biosynthesis during meiotic maturation of amphibian oocytes. Dev Biol 87:351–355

    Article  PubMed  CAS  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  PubMed  CAS  Google Scholar 

  • Tao O, Yokota C, Puck H, Kofron M, Birsoy B, Yan D, Asashima M, Wylie CC, Lin X, Heasman J (2005) Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120:857–871

    Article  PubMed  CAS  Google Scholar 

  • Vincent JP, Gerhart JC (1987) Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification. Dev Biol 123:526–539

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Tan C, Darken RS, Wilson PA, Klein PS (2002) β-Catenin/Tcf regulated transcription prior to the midblastula transition. Development 129:5743–5752

    Article  PubMed  CAS  Google Scholar 

  • Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT (1996) The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10:1443–1454

    Article  PubMed  CAS  Google Scholar 

  • Younglai EV, Godeau F, Mester J, Baulieu EE (1980) Increased ornithine decarboxylase activity during meiotic maturation in Xenopus laevis oocytes. Biochem Biophys Res Commun 96:1274–1281

    Article  PubMed  CAS  Google Scholar 

  • Zernicka-Goetz M, Pines J, Ryan K, Siemering KR, Haseloff J, Evans MJ, Gurdon JB (1996) An indelible lineage marker for Xenopus using a mutated green fluorescent protein. Development 122:3719–3724

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Senji Takahashi and Masayuki Kajitani, Department of Biosciences, Teikyo University, for their supports in our research. Thanks are also due to Professor Akira Komatsu, Department of Judo Therapy, Teikyo University for trial to apply statistical treatment (t test) for the data obtained. The present work was supported by 2010 Okinaga Special Reseach Support Fund in Utsunomiya Campus in Teikyo University, Utsunomiya, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichiro Shiokawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishina, T., Fuchimukai, K., Igarashi, K. et al. Modification of secondary head-forming activity of microinjected ∆β-catenin mRNA by co-injected spermine and spermidine in Xenopus early embryos. Amino Acids 42, 791–801 (2012). https://doi.org/10.1007/s00726-011-0996-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0996-x

Keywords

Navigation