Skip to main content
Log in

Structure and function of polyamine-amino acid antiporters CadB and PotE in Escherichia coli

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The structure and function of a cadaverine–lysine antiporter CadB and a putrescine–ornithine antiporter PotE in Escherichia coli were evaluated using model structures based on the crystal structure of AdiC, an agmatine–arginine antiporter, and the activities of various CadB and PotE mutants. The central cavity of CadB, containing the substrate binding site, was wider than that of PotE, mirroring the different sizes of cadaverine and putrescine. The size of the central cavity of CadB and PotE was dependent on the angle of transmembrane helix 6 (TM6) against the periplasm. Tyr73, Tyr89, Tyr90, Glu204, Tyr235, Asp303, and Tyr423 of CadB, and Cys62, Trp201, Glu207, Trp292, and Tyr425 of PotE were strongly involved in the antiport activities. In addition, Trp43, Tyr57, Tyr107, Tyr366, and Tyr368 of CadB were involved preferentially in cadaverine uptake at neutral pH, while only Tyr90 of PotE was involved preferentially in putrescine uptake. The results indicate that the central cavity of CadB consists of TMs 2, 3, 6, 7, 8, and 10, and that of PotE consists of TMs 2, 3, 6, and 8. These results also suggest that several amino acid residues are necessary for recognition of cadaverine in the periplasm because the level of cadaverine is much lower than that of putrescine in the periplasm at neutral pH. All the amino acid residues identified as being strongly involved in both the antiport and uptake activities were located on the surface of the transport path consisting of the central cavity and TM12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AdiC:

Agmatine–arginine antiporter

CadB:

Cadaverine–lysine antiporter

PotE:

Putrescine–ornithine antiporter

APC superfamily:

Amino acid/polyamine/organocation superfamily

TM:

Transmembrane helix

References

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  • Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4:1–13

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Jayaram H, Shane T, Kolmakova-Partensky L, Wu F, Williams C, Xiong Y, Miller C (2009) Structure of a prokaryotic virtual proton pump at 3.2 Å resolution. Nature 460:1040–1043

    PubMed  CAS  Google Scholar 

  • Gao X, Lu F, Zhou L, Dang S, Sun L, Li X, Wang J, Shi Y (2009) Structure and mechanism of an amino acid antiporter. Science 324:1565–1568

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Zhou L, Jiao X, Lu F, Yan C, Zeng X, Wang J, Shi Y (2010) Mechanism of substrate recognition and transport by an amino acid antiporter. Nature 463:828–832

    Article  PubMed  CAS  Google Scholar 

  • Gitlitz PH, Sunderman FW Jr, Hohnadel DC (1974) Ion-exchange chromatography of amino acids in sweat collected from healthy subjects during sauna bathing. Clin Chem 20:1305–1312

    PubMed  CAS  Google Scholar 

  • Gong S, Richard H, Foster JW (2003) YjdE (AdiC) is the arginine: agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J Bacteriol 185:4402–4409

    Article  PubMed  CAS  Google Scholar 

  • Herbert JD, Coulson RA, Hernandez T (1966) Free amino acids in the caiman and rat. Comp Biochem Physiol 17:583–598

    Article  PubMed  CAS  Google Scholar 

  • Higashi K, Ishigure H, Demizu R, Uemura T, Nishino K, Yamaguchi A, Kashiwagi K, Igarashi K (2008) Identification of a spermidine excretion protein complex (MdtJI) in Escherichia coli. J Bacteriol 190:872–878

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Kashiwagi K (1996) Polyamine transport in Escherichia coli. Amino Acids 10:83–97

    Article  CAS  Google Scholar 

  • Igarashi K, Kashiwagi K (1999) Polyamine transport in bacteria and yeast. Biochem J 344:633–642

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Kashiwagi K (2010a) Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol Biochem 48:506–512

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Kashiwagi K (2010b) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Kashiwagi K, Hamasaki H, Miura A, Kakegawa T, Hirose S, Matsuzaki S (1986) Formation of a compensatory polyamine by Escherichia coli polyamine-requiring mutants during growth in the absence of polyamines. J Bacteriol 166:128–134

    PubMed  CAS  Google Scholar 

  • Iyer R, Williams C, Miller C (2003) Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol 185:6556–6561

    Article  PubMed  CAS  Google Scholar 

  • Jack DL, Paulsen IT, Saier MH Jr (2000) The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146:1797–1814

    PubMed  CAS  Google Scholar 

  • Kashiwagi K, Igarashi K (1988) Adjustment of polyamine contents in Escherichia coli. J Bacteriol 170:3131–3135

    PubMed  CAS  Google Scholar 

  • Kashiwagi K, Hosokawa N, Furuchi T, Kobayashi H, Sasakawa C, Yoshikawa M, Igarashi K (1990) Isolation of polyamine transport-deficient mutants of Escherichia coli and cloning of the genes for polyamine transport proteins. J Biol Chem 265:20893–20897

    PubMed  CAS  Google Scholar 

  • Kashiwagi K, Suzuki T, Suzuki F, Furuchi T, Kobayashi H, Igarashi K (1991) Coexistence of the genes for putrescine transport protein and ornithine decarboxylase at 16 min on Escherichia coli chromosome. J Biol Chem 266:20922–20927

    PubMed  CAS  Google Scholar 

  • Kashiwagi K, Miyamoto S, Suzuki F, Kobayashi H, Igarashi K (1992) Excretion of putrescine by the putrescine–ornithine antiporter encoded by the potE gene of Escherichia coli. Proc Natl Acad Sci U S A 89:4529–4533

    Article  PubMed  CAS  Google Scholar 

  • Kashiwagi K, Shibuya S, Tomitori H, Kuraishi A, Igarashi K (1997) Excretion and uptake of putrescine by the PotE protein in Escherichia coli. J Biol Chem 272:6318–6323

    Article  PubMed  CAS  Google Scholar 

  • Kashiwagi K, Kuraishi A, Tomitori H, Igarashi A, Nishimura K, Shirahata A, Igarashi K (2000) Identification of the putrescine recognition site on polyamine transport protein PotE. J Biol Chem 275:36007–36012

    Article  PubMed  CAS  Google Scholar 

  • Kurihara S, Tsuboi Y, Oda S, Kim HG, Kumagai H, Suzuki H (2009) The putrescine importer PuuP of Escherichia coli K-12. J Bacteriol 191:2776–2782

    Article  PubMed  CAS  Google Scholar 

  • Meng SY, Bennett GN (1992) Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J Bacteriol 174:2659–2669

    PubMed  CAS  Google Scholar 

  • Miyamoto S, Kashiwagi K, Ito K, Watanabe S, Igarashi K (1993) Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli. Arch Biochem Biophys 300:63–68

    Article  PubMed  CAS  Google Scholar 

  • Soksawatmaekhin W, Kuraishi A, Sakata K, Kashiwagi K, Igarashi K (2004) Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol Microbiol 51:1401–1412

    Article  PubMed  CAS  Google Scholar 

  • Soksawatmaekhin W, Uemura T, Fukiwake N, Kashiwagi K, Igarashi K (2006) Identification of the cadaverine recognition site on the cadaverine–lysine antiporter CadB. J Biol Chem 281:29213–29220

    Article  PubMed  CAS  Google Scholar 

  • Takayama M, Ohyama T, Igarashi K, Kobayashi H (1994) Escherichia coli cad operon functions as a supplier of carbon dioxide. Mol Microbiol 11:913–918

    Article  PubMed  CAS  Google Scholar 

  • Watson N, Dunyak DS, Rosey EL, Slonczewski JL, Olson ER (1992) Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH. J Bacteriol 174:530–540

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. A. J. Michael and K. Williams for their help in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuei Igarashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomitori, H., Kashiwagi, K. & Igarashi, K. Structure and function of polyamine-amino acid antiporters CadB and PotE in Escherichia coli . Amino Acids 42, 733–740 (2012). https://doi.org/10.1007/s00726-011-0989-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0989-9

Keywords

Navigation