Skip to main content
Log in

Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In Arctic and Antarctic marine regions, where the temperature declines below the colligative freezing point of physiological fluids, efficient biological antifreeze agents are crucial for the survival of polar fish. One group of such agents is classified as antifreeze glycoproteins (AFGP) that usually consist of a varying number (n = 4–55) of [AAT] n -repeating units. The threonine side chain of each unit is glycosidically linked to β-d-galactosyl-(1 → 3)-α-N-acetyl-d-galactosamine. These biopolymers can be considered as biological antifreeze foldamers. A preparative route for stepwise synthesis of AFGP allows for efficient synthesis. The diglycosylated threonine building block was introduced into the peptide using microwave-enhanced solid phase synthesis. By this versatile solid phase approach, glycosylated peptides of varying sequences and lengths could be obtained. Conformational studies of the synthetic AFGP analogs were performed by circular dichroism experiments (CD). Furthermore, the foldamers were analysed microphysically according to their inhibiting effect on ice recrystallization and influence on the crystal habit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AFGP:

Antifreeze glycopeptide or -protein

AFP:

Antifreeze protein

Br:

Broad

CD:

Circular dichroism

DIPEA:

N,N-Diisopropylethylamine

DMF:

N,N-Dimethylformamide

DPPA:

Diphenylphosphoryl azide

EtOAc:

Ethyl acetate

Fmoc:

N-(9H-Fluoren-9-yl)-methoxycarbonyl

Gal-GalNAc:

β-d-Galactosyl-(1 → 3)-α-N-acetyl-d-galactosamine

HATU:

O-(7-Azabenzotriazol-1-yl)-N,N,N′N′-tetramethyluronium hexafluorophos-phate

HOAt:

1-Hydroxy-7-azabenzotriazole

MeOH:

Methanol

HOBt:

1-Hydroxybenzotriazole

HPLC:

High performance liquid chromatography

MALDI-ToF MS:

Matrix assisted laser desorption ionization-time of flight mass spectrometry

NaOMe:

Sodium methoxide

NMP:

1-Methyl-2-pyrrolidone

NMR:

Nuclear magnetic resonance

NMM:

4-Methyl-2-pyrrolidinone

PyBOB:

(Benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate

SPPS:

Solid phase peptide synthesis

TBDPS:

tert-Butyldiphenylsilyl

TBTU:

O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate

TCA:

Trichloroacetic acid

TMSOTf:

Trimethylsilyl trifluoromethanesulfonate

TFA:

Trifluoroacetic acid

VCDC:

Vacuum column dry chromatography

References

  • Bouvet V, Ben RN (2003) Antifreeze glycoproteins-structure, conformation, and biological applications. Cell Biochem Biophys 39:133–144

    Article  PubMed  CAS  Google Scholar 

  • Budke C, Koop T (2006) Ice recrystallization inhibition and molecular recognition of ice faces by Poly(vinyl alcohol). Chem Phys Chem 7:2601–2606

    PubMed  CAS  Google Scholar 

  • Budke C, Heggemann C, Koch M, Sewald N, Koop T (2009) Ice recrystallization kinetics in the presence of synthetic antifreeze glycoprotein analogues using the framework of LSW theory. J Phys Chem B 113(9):2865–2873

    Article  PubMed  CAS  Google Scholar 

  • Burcham TS, Osuga DT, Yeh Y, Feeney RE (1986) A kinetic description of antifreeze glycoprotein activity. J Biol Chem 261(14):6390–6397

    PubMed  CAS  Google Scholar 

  • Bush CA, Feeney RE (1986) Conformation of the glycotripeptide repeating unit of antifreeze glycoprotein of polar fish as determined from the fully assigned proton NMR spectrum. Int J Pept Protein Res 28:386–397

    Article  PubMed  CAS  Google Scholar 

  • Bush CA, Feeney RE, Osuga T, Ralapatu S, Yeh Y (1981) Antifreeze glycoprotein: conformational model based on vacuum ultraviolet circular dichroism data. J Pept Protein Res 17:125–129

    Article  CAS  Google Scholar 

  • Bush CA, Ralapati S, Matson GM, Yamasaki RB, Osuga DT, Yeh Y, Feeney RE (1984) Conformation of the antifreeze glycoprotein of polar fish. Arch Biochem Biophys 232:624–631

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Liu Z, Kallenbach NR (2004) The polyproline II conformation in short alanine peptides is noncooperative. Proc Natl Acad Sci USA 101:15352–15357

    Article  PubMed  CAS  Google Scholar 

  • Clarke CJ, Buckley SL, Lindner N (2002) Ice structuring proteins—a new name for antifreeze proteins. Cryoletters 23:89–92

    PubMed  CAS  Google Scholar 

  • Czernecki S, Ayadi E, Randriamandimby D (1994) New and efficient synthesis of protected 2-Azido-2-deoxy-glycopyranoses from the Corresponding Glycal. J Chem Soc Chem Commun:35–36

  • Danishefsky SJ, Behar V, Randolph JT, Lloyd KO (1995) Application of the glycal assembly method to the concise synthesis of neoglycoconjugates of Ley and Leb blood group determinants and of H-type I and H-type II oligosaccharides. J Am Chem Soc 117:5701–5711

    Article  CAS  Google Scholar 

  • Drake AF, Siligardi G, Gibbons WA (1988) Reassessment of the elctronic circular dichroism criteria for random coil conformations of poly(l-lysine) and the implications for the protein folding and denaturation studies. Biophys Chem 31:143–146

    Article  PubMed  CAS  Google Scholar 

  • Ebbinghaus S, Meister K, Born B, DeVries AL, Gruebele M, Havenith M (2010) Antifreeze glycoprotein activity correlates with long-range protein-water dynamics. J Am Chem Soc 132:12210–12211

    Article  PubMed  CAS  Google Scholar 

  • Eker F, Griebenow K, Cao X, Nafie LA, Schweitzer-Stenner R (2004) Preferred peptide backbone conformations in the unfolded state revealed by the structure analyses of alanine-based (AXA) tripeptides in aqueous solution. Proc Natl Acad Sci USA 101:10054–10059

    Article  PubMed  CAS  Google Scholar 

  • Evans ME (1972) Methyl 4, 6-O-benzylidene-α- and -β-d-glycosides. Carbohydr Res 21:473–475

    Article  CAS  Google Scholar 

  • Feeney RE (1974) A biological antifreeze. Am. Sci. 62:712–719

    PubMed  CAS  Google Scholar 

  • Fügedi P, Garegg PJ, Norberg T (1987) Thioglycosides as glycosylating agents in oligosaccharide synthesis. Glycoconj. 4:97–108

    Article  Google Scholar 

  • Garner J, Harding MM (2010) Design and synthesis of antifreeze glycoproteins and mimics. Chem BioChem 11:2489–2498

    CAS  Google Scholar 

  • Gervay J, Peterson JM, Oriyama T, Danishefsky SJ (1993) An unexpected sialylation total syntheses of GM4 and a positional isomer. J Org Chem 58:5465–5468

    Article  CAS  Google Scholar 

  • Harding MM, Anderberg PI, Haymet ADJ (2003) Antifreeze glycoproteins from polar fish. Eur J Biochem 270:1381–1392

    Article  PubMed  CAS  Google Scholar 

  • Heggemann C, Budke C, Schomburg B, Majer Z, Wißbrock M, Koop T, Sewald N (2010) Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies. Amino Acids 38:213–222

    Article  PubMed  CAS  Google Scholar 

  • Helferich B, Weis K (1956) Zur Synthese von Glucosiden und von nicht-reduzierenden Disacchariden. Chem Ber 89:314–321

    Article  CAS  Google Scholar 

  • Kelly M, Chellgren BW, Rucker AL, Troutman JM, Fried MG, Miller AF, Creamer TP (2001) Host-guest study of left-handed polyproline II helix formation. Biochemistry 40:14376–14383

    Article  PubMed  CAS  Google Scholar 

  • Knight CA, DeVries AL (1994) Effects of a polymeric, nonequilibrium antifreeze upon ice growth from water. J Cryst Growth 143:301–310

    Article  CAS  Google Scholar 

  • Knight CA, DeVries AL (2009) Ice growth in supercooled solutions of a biological “antifreeze’’, AFGP 1–5: an explanation in terms of adsorption rate for the concentration dependence of the freezing point. Phys Chem Chem Phys 11:5749–5761

    Article  PubMed  CAS  Google Scholar 

  • Knight CA, DeVries AL, Oolman LD (1984) Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308:295–296

    Article  PubMed  CAS  Google Scholar 

  • Knight CA, Hallet J, DeVries AL (1988) Solute effects in ice recrystallization: an assessment technique. Cryobiology 25:55–60

    Article  PubMed  CAS  Google Scholar 

  • Knight CA, Driggers E, DeVries AL (1993) Adsorption to Ice of Fish Antifreeze Glycopeptide 7 and 8. Biophys J 64:252–259

    Article  PubMed  CAS  Google Scholar 

  • Knight CA, Wen D, Laursen RA (1995) Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology 32:23–34

    Article  PubMed  CAS  Google Scholar 

  • Kuduk SD, Schwarz JB, Chen X-T, Glunz PW, Sames D, Ragupathi G, Livingston PO, Danishefsky SJ (1998) Synthetic and immunological studies on clustered modes of mucin- related TN and TF O-linked antigens: the preparation of a glycopeptide-based vaccine for clinical trials against prostate cancer. J Am Chem Soc 120:12474–12485

    Article  CAS  Google Scholar 

  • Lane AN, Hays LM, Crowe LM, Crowe JH, Feeney RE (1998) Conformational and dynamic properties of a 14 residue antifreeze glycopeptides from anarctic cod. Protein Sci 7:1555–1563

    Article  PubMed  CAS  Google Scholar 

  • Lane AN, Hays LM, Tsvetkova N, Feeney RE, Crowe LM, Crowe JH (2000) Comparison of the solution conformation and dynamics of antifreeze glycoproteins from Antarctic fish. Biophys J 78:3195–3207

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Duman JG, DeVries AL (1972) Studies on the structure and activity of low molecular weight glycoproteins from an Antarctic fish. Biochem Biophys Res Commun 46:87–92

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Chen K, Ng A, Shi Z, Woody RW, Kallenbach NR (2004) Solvent dependence of PII conformation in model alanine peptides. J Am Chem Soc 126:15141–15150

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Wang K (2003) Malleable conformation of the elastic PEVK segment of titin: non-cooperative interconversion on polyproline II helix, β turn, and unordered structures. Biochem J 374:687–695

    Article  PubMed  CAS  Google Scholar 

  • Makowska J, Rodziewicz-Motowido S, Bagizska K, Vila JA, Liwo A, Chmurzyski L, Scheraga HA (2006) Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides proteins. Proc Natl Acad Sci USA 103:1744–1749

    Article  PubMed  CAS  Google Scholar 

  • Mathieux N, Paulsen H, Meldal M, Bock K (1997) Synthesis of glycopeptides sequences of repeating units of the mucins MUC 2 and MUC 3 containing oligosaccharide side-chains with core 1, core 2, core 3, core 4 and core 6 structure. J Chem Soc Perkin Trans 1:2359–2368

    Article  Google Scholar 

  • Matsushita T, Hinou H, Kurogochi M, Shimizu H, Nishimura S-I (2005) Rapid microwave assisted solid-phase glycopeptides synthesis. Org Lett 7:877–880

    Article  PubMed  CAS  Google Scholar 

  • Morris HR, Thompson MR, Osuga DT, Ahmed AI, Chan SM, Vandenheede JR, Feeney RE (1978) Antifreeze glycoproteins from the blood of Antarctic fish—the structure of the proline-containing glycopeptides. J Biol Chem 253:5155–5516

    PubMed  CAS  Google Scholar 

  • Osuga DT, Feeney RE (1978) Antifreeze glycoproteins from Arctic fish. J Biol Chem 253:5338–5348

    PubMed  CAS  Google Scholar 

  • Owens NW, Stetefeld J, Lattova E, Schweizer F (2010) Contiguous O-Galactosylation of 4(R)-Hydroxy-l-proline Residues Forms Very Stable Polyproline II Helices. J Am Chem Soc 132:5036–5042

    Google Scholar 

  • Parody-Morreale A, Murphy KP, Dicera E, Fall R, DeVries AL, Gill SJ (1988) Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins. Nature 333:782–783

    Article  PubMed  CAS  Google Scholar 

  • Paulsen H, Adermann K (1989) Synthese von O-Glykopeptid-Sequenzen des N-Terminus von Interleukin. Liebigs Ann Chem:751–769

  • Paulsen H, Hölck J-P (1982) Synthese der Glycopeptide O-β-d-Galactopyranosyl-(1 → 3)-O-(2-Acetamido-2-Deoxy-α-d-Galactopyranosyl)-(1 → 3)-L-Serin und L-Threonin. Carbohydr Res 109:89–107

    Article  PubMed  CAS  Google Scholar 

  • Peltier R, Brimble MA, Wojnar JM, Williams DE, Evans CW, DeVries AL (2010) Synthesis and antifreeze activity of fish antifreeze glycoproteins and their analogues. Chem Sci 1:538–551

    Article  CAS  Google Scholar 

  • Plattner C, Höfener M, Sewald N (2011) One-pot azidochlorination of glycals. Org Lett 13:545–547

    Article  PubMed  CAS  Google Scholar 

  • Raymond JA, Wilson P, DeVries AL (1989) Inhibition of growth of nonbasal planes in ice by fish antifreezes. Proc Natl Acad Sci USA 86:881–885

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RR, Michel J, Roos M (1984) Glycosylimidate, 12 Direkte Synthese von O-α- und O-β-Glycosyl-imidaten. Liebigs Ann Chem:1343–1357

  • Shao N, Guo Z (2005) Solution-phase synthesis with solid-state workup of an O-glycopeptide with a cluster of cancer-related T-antigens. Org Lett 7:3589–3592

    Article  PubMed  CAS  Google Scholar 

  • Shi Z, Chen K, Liu Z, Kallenbach NR (2006) Conformation of the backbone in unfolded proteins. Chem Rev 106:1877–1897

    Article  PubMed  CAS  Google Scholar 

  • Tachibana Y, Fletcher GL, Fujitani N, Tsuda S, Monde K, Nishimura S-I (2004) Antifreeze glycoproteins elucidation of the structural motifs that are essential for antifreeze activity. Angew Chem Int Ed 116:874–880

    Google Scholar 

  • Tatham AS, Drake AF, Shewry PR (1989) Conformational studies of a synthetic peptide corresponding to the repeat motif of C hordein. Biochem J 259:471–476

    PubMed  CAS  Google Scholar 

  • Tiffany ML, Krimm S (1973) Extended conformation of polypeptides and proteins in urea and guanidine hydrochloride. Biopolymers 12:575–587

    Article  CAS  Google Scholar 

  • Tseng PH, Jiaang WT, Chang MY, Che ST (2001) Facile solid-phase synthesis of an antifreeze glycoprotein. Chem Eur J 7:585–590

    Article  CAS  Google Scholar 

  • Tsuda T, Nishimura S-I (1996) Synthesis of an antifreeze glycoprotein analogue: efficient preparation of sequential glycopeptide polymers. Chem Comm 2779–2780

  • Venugopal MG, Ramshaw JAM, Braswell E, Zhu D, Brodsky B (1969) Electrostatic interactions in collagen-like triple helical peptides. Biochemistry 8:4108–4116

    Article  Google Scholar 

  • Winterfeld GA, Schmidt RR (2001) Nitroglycal concatenation: a broadly applicable and effient approach to the synthesis of complex O-glycans. Angew Chem Int Ed 40:2654–2657

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from Deutsche Forschungsgemeinschaft (SFB 613, Project A8). L.N. was funded by a PhD fellowship of Bielefeld University.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Sewald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagel, L., Plattner, C., Budke, C. et al. Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers. Amino Acids 41, 719–732 (2011). https://doi.org/10.1007/s00726-011-0937-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0937-8

Keywords

Navigation