Skip to main content

Advertisement

Log in

Order of amino acids in C-terminal cysteine-containing peptide-based chelators influences cellular processing and biodistribution of 99mTc-labeled recombinant Affibody molecules

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Affibody molecules constitute a novel class of molecular display selected affinity proteins based on non-immunoglobulin scaffold. Preclinical investigations and pilot clinical data have demonstrated that Affibody molecules provide high contrast imaging of tumor-associated molecular targets shortly after injection. The use of cysteine-containing peptide-based chelators at the C-terminus of recombinant Affibody molecules enabled site-specific labeling with the radionuclide 99mTc. Earlier studies have demonstrated that position, composition and the order of amino acids in peptide-based chelators influence labeling stability, cellular processing and biodistribution of Affibody molecules. To investigate the influence of the amino acid order, a series of anti-HER2 Affibody molecules, containing GSGC, GEGC and GKGC chelators have been prepared and characterized. The affinity to HER2, cellular processing of 99mTc-labeled Affibody molecules and their biodistribution were investigated. These properties were compared with that of the previously studied 99mTc-labeled Affibody molecules containing GGSC, GGEC and GGKC chelators. All variants displayed picomolar affinities to HER2. The substitution of a single amino acid in the chelator had an appreciable influence on the cellular processing of 99mTc. The biodistribution of all 99mTc-labeled Affibody molecules was in general comparable, with the main difference in uptake and retention of radioactivity in excretory organs. The hepatic accumulation of radioactivity was higher for the lysine-containing chelators and the renal retention of 99mTc was significantly affected by the amino acid composition of chelators. The order of amino acids influenced renal uptake of some conjugates at 1 h after injection, but the difference decreased at later time points. Such information can be helpful for the development of other scaffold protein-based imaging and therapeutic radiolabeled conjugates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlgren S, Tolmachev V (2010) Radionuclide molecular imaging using Affibody molecules. Curr Pharm Biotechnol 11:581–589

    Article  PubMed  CAS  Google Scholar 

  • Ahlgren S, Orlova A, Rosik D, Sandström M, Sjöberg A, Baastrup B, Widmark O, Fant G, Feldwisch J, Tolmachev V (2008) Evaluation of maleimide derivative of DOTA for site-specific labeling of recombinant Affibody molecules. Bioconjug Chem 19:235–243

    Article  PubMed  CAS  Google Scholar 

  • Ahlgren S, Wållberg H, Tran TA, Widström C, Hjertman M, Abrahmsén L, Berndorff D, Dinkelborg LM, Cyr JE, Feldwisch J, Orlova A, Tolmachev V (2009) Targeting of HER2-expressing tumors using a site-specifically 99mTc-labeled recombinant Affibody molecule ZHER2:2395 with C-terminal engineered cysteine. J Nucl Med 50:781–789

    Article  PubMed  CAS  Google Scholar 

  • Ahlgren S, Orlova A, Wållberg H, Hansson M, Sandström M, Lewsley R, Wennborg A, Abrahmsén L, Tolmachev V, Feldwisch J (2010a) Targeting of HER2-expressing tumors using 111In-ABY-025, a second generation Affibody molecule with a fundamentally re-engineered scaffold. J Nucl Med 51:1131–1138

    Article  PubMed  CAS  Google Scholar 

  • Ahlgren S, Andersson K, Tolmachev V (2010b) Kit formulation for 99mTc-labeling of recombinant anti-HER2 Affibody molecules with a C-terminally engineered cysteine. Nucl Med Biol 37:539–546

    Article  PubMed  CAS  Google Scholar 

  • Baum RP, Prasad V, Müller D, Schuchardt C, Orlova A, Wennborg A, Tolmachev V, Feldwisch J (2010) Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled Affibody. J Nucl Med 51:892–897

    Article  PubMed  Google Scholar 

  • Britz-Cunningham SH, Adelstein SJ (2003) Molecular targeting with radionuclides: state of the science. J Nucl Med 44:1945–1961

    PubMed  CAS  Google Scholar 

  • Cameron DA, Stein S (2008) Drug insight: intracellular inhibitors of HER2—clinical development of lapatinib in breast cancer. Nat Clin Pract Oncol 5:512–520

    Article  PubMed  CAS  Google Scholar 

  • Chang HR (2010) Trastuzumab-based neoadjuvant therapy in patients with HER2-positive breast cancer. Cancer 116:2856–2867

    Article  PubMed  CAS  Google Scholar 

  • Citri A, Yarden Y (2006) EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7:505–516

    Article  PubMed  CAS  Google Scholar 

  • Ekblad T, Tran T, Orlova A et al (2008) Development and preclinical characterisation of 99mTc-labelled Affibody molecules with reduced renal uptake. Eur J Nucl Med Mol Imaging 35:2245–2255

    Article  PubMed  CAS  Google Scholar 

  • Ekblad T, Orlova A, Feldwisch J, Wennborg A, Eriksson Karlström A, Tolmachev V (2009) Positioning of 99mTc-chelators influences radiolabeling, stability and biodistribution of Affibody molecules. Bioorg Med Chem Lett 19:3912–3914

    Article  PubMed  CAS  Google Scholar 

  • Engfeldt T, Orlova A, Tran T et al (2007a) Imaging of HER2-expressing tumours using a synthetic Affibody molecule containing the 99mTc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence. Eur J Nucl Med Mol Imaging 34:722–733

    Article  PubMed  CAS  Google Scholar 

  • Engfeldt T, Tran T, Orlova A, Widström Ch, Eriksson Karlström A, Tolmachev V (2007b) 99mTc-chelator engineering to improve tumour targeting properties of a HER2-specific Affibody molecule. Eur J Nucl Med Mol Imaging 34:1843–1853

    Article  PubMed  CAS  Google Scholar 

  • Hynes NE, MacDonald G (2009) ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21:177–184

    Article  PubMed  CAS  Google Scholar 

  • Löfblom J, Feldwisch J, Tolmachev V, Carlsson J, Ståhl S, Frejd FY (2010) Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 584:2670–2680

    Article  PubMed  Google Scholar 

  • Mankoff DA (2009) Molecular imaging to select cancer therapy and evaluate treatment response. Q J Nucl Med Mol Imaging 53:181–192

    PubMed  CAS  Google Scholar 

  • Miao Z, Levi J, Cheng Z (2010) Protein scaffold-based molecular probes for cancer molecular imaging. Amino Acids. doi:10.1007/s00726-010-0503-9

  • Nygren PA (2008) Alternative binding proteins: affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J 275:2668–2676

    Article  PubMed  CAS  Google Scholar 

  • Orlova A, Tolmachev V, Pehrson R, Lindborg M, Tran T, Sandström M, Nilsson FY, Wennborg A, Abrahmsén L, Feldwisch J (2007) Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res 67:2178–2186

    Article  PubMed  CAS  Google Scholar 

  • Orlova A, Magnusson M, Eriksson T, Nilsson M, Larsson B, Höiden-Guthenberg I, Widström C, Carlsson J, Tolmachev V, Ståhl S, Nilsson F (2006) Tumor imaging using a picomolar affinity HER2 binding Affibody molecule. Cancer Res 66:4339–4348

    Article  Google Scholar 

  • Tolmachev V (2008) Imaging of HER-2 overexpression in tumors for guiding therapy. Curr Pharm Des 14:2999–3011

    Article  PubMed  CAS  Google Scholar 

  • Tolmachev V, Nilsson FY, Widström C, Andersson K, Rosik D, Gedda L, Wennborg A, Orlova A (2006) 111In-benzyl-DTPA-ZHER2:342, an affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumors. J Nucl Med 47:846–853

    PubMed  CAS  Google Scholar 

  • Tolmachev V, Stone-Elander S, Orlova A (2010a) Current approaches to the use of radiolabeled tyrosine kinase-targeting drugs for patient stratification and treatment response monitoring: prospects and pitfalls. Lancet Oncol 11:992–1000

    Article  PubMed  CAS  Google Scholar 

  • Tolmachev V, Hofström C, Malmberg J et al (2010b) HEHEHE-tagged affibody molecule may be purified by IMAC, is conveniently labeled with [99(m)Tc(CO)3](+), and shows improved biodistribution with reduced hepatic radioactivity accumulation. Bioconjug Chem 21:2013–2022

    Article  PubMed  CAS  Google Scholar 

  • Tolmachev V, Velikyan I, Sandström M, Orlova A (2010c) A HER2-binding Affibody molecule labelled with 68Ga for PET imaging: direct in vivo comparison with the 111In-labelled analogue. Eur J Nucl Med Mol Imaging 37:1356–1367

    Article  PubMed  CAS  Google Scholar 

  • Tran T, Engfeldt T, Orlova A et al (2007a) In vivo evaluation of cysteine-based chelators for attachment of 99mTc to tumor-targeting Affibody molecules. Biocojug Chem 18:549–558

    Article  CAS  Google Scholar 

  • Tran T, Engfeldt T, Orlova A et al (2007b) 99mTc-maEEE-ZHER2:342, an Affibody molecule-based tracer for detection of HER2-expression in malignant tumors. Bioconjug Chem 18:1956–1964

    Article  PubMed  CAS  Google Scholar 

  • Tran T, Ekblad T, Orlova A et al (2008) Effects of Lysine-containing mercaptoacetyl-based Chelators on the Biodistribution of 99mTc-labeled anti-HER2. Bioconjug Chem 19:2568–2576

    Article  PubMed  CAS  Google Scholar 

  • Tran TA, Rosik D, Abrahmsén L et al (2009) Design, synthesis and biological evaluation of a HER2-specific affibody molecule for molecular imaging. Eur J Nucl Med Mol Imaging 36:1864–1873

    Article  PubMed  CAS  Google Scholar 

  • Wållberg H, Orlova A (2008) Slow internalization of anti-HER2 synthetic affibody monomer 111In-DOTA-ZHER2:342-pep2: implications for development of labeled tracers. Cancer Biother Radiopharm 23:435–442

    Article  PubMed  Google Scholar 

  • Wållberg H, Ahlgren S, Widström C, Orlova A (2010) Evaluation of the radiocobalt-labeled [MMA-DOTA-Cys61]-Z HER2:2395(-Cys) affibody molecule for targeting of HER2-expressing tumors. Mol Imaging Biol 12:54–62

    Article  PubMed  Google Scholar 

  • Wållberg H, Orlova A, Altai M, Widström C, Hosseinimehr SJ, Malmberg J, Ståhl S, Tolmachev V (2011a) Molecular design and optimization of 99mTc-labeled recombinant affibody molecules improves their biodistribution and imaging properties. J Nucl Med 52:461–469

    Google Scholar 

  • Wållberg H, Löfdahl PÅ, Tschapalda K, Uhlén M, Tolmachev V, Nygren PÅ, Ståhl S (2011b) Affinity recovery of eight HER2-binding affibody variants using an anti-idiotypic affibody ligand. Protein Exp Purif 76:127–135

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by grants from the Swedish Cancer Society (Cancerfonden) and the Swedish Research Council (Vetenskapsrådet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Tolmachev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altai, M., Wållberg, H., Orlova, A. et al. Order of amino acids in C-terminal cysteine-containing peptide-based chelators influences cellular processing and biodistribution of 99mTc-labeled recombinant Affibody molecules. Amino Acids 42, 1975–1985 (2012). https://doi.org/10.1007/s00726-011-0927-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0927-x

Keywords

Navigation