Amino Acids

, Volume 40, Issue 5, pp 1333–1348 | Cite as

Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function

  • R. Guzun
  • N. Timohhina
  • K. Tepp
  • M. Gonzalez-Granillo
  • I. Shevchuk
  • V. Chekulayev
  • A. V. Kuznetsov
  • T. Kaambre
  • V. A. Saks
Review Article

Abstract

Physiological role of creatine (Cr) became first evident in the experiments of Belitzer and Tsybakova in 1939, who showed that oxygen consumption in a well-washed skeletal muscle homogenate increases strongly in the presence of creatine and with this results in phosphocreatine (PCr) production with PCr/O2 ratio of about 5–6. This was the beginning of quantitative analysis in bioenergetics. It was also observed in many physiological experiments that the contractile force changes in parallel with the alteration in the PCr content. On the other hand, it was shown that when heart function is governed by Frank–Starling law, work performance and oxygen consumption rate increase in parallel without any changes in PCr and ATP tissue contents (metabolic homeostasis). Studies of cellular mechanisms of all these important phenomena helped in shaping new approach to bioenergetics, Molecular System Bioenergetics, a part of Systems Biology. This approach takes into consideration intracellular interactions that lead to novel mechanisms of regulation of energy fluxes. In particular, interactions between mitochondria and cytoskeleton resulting in selective restriction of permeability of outer mitochondrial membrane anion channel (VDAC) for adenine nucleotides and thus their recycling in mitochondria coupled to effective synthesis of PCr by mitochondrial creatine kinase, MtCK. Therefore, Cr concentration and the PCr/Cr ratio became important kinetic parameters in the regulation of respiration and energy fluxes in muscle cells. Decrease in the intracellular contents of Cr and PCr results in a hypodynamic state of muscle and muscle pathology. Many experimental studies have revealed that PCr may play two important roles in the regulation of muscle energetics: first by maintaining local ATP pools via compartmentalized creatine kinase reactions, and secondly by stabilizing cellular membranes due to electrostatic interactions with phospholipids. The second mechanism decreases the production of lysophosphoglycerides in hypoxic heart, protects the cardiac cells sarcolemma against ischemic damage, decreases the frequency of arrhythmias and increases the post-ischemic recovery of contractile function. PCr is used as a pharmacological product Neoton in cardiac surgery as one of the components of cardioplegic solutions for protection of the heart against intraoperational injury and injected intravenously in acute myocardial ischemic conditions for improving the hemodynamic response and clinical conditions of patients with heart failure.

Keywords

Creatine Phosphotransfer networks Mitochondria Respiration Regulation Systems biology 

References

  1. Adhihetty PJ, Beal MF (2008) Creatine and its potential therapeutic value for targeting cellular energy impairment in neurodegenerative diseases. Neuromol Med 10:275–290CrossRefGoogle Scholar
  2. Aliev MK, Saks VA (1997) Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration. Biophys J 73(1):428–445PubMedCrossRefGoogle Scholar
  3. Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76:329–343PubMedCrossRefGoogle Scholar
  4. Anmann T, Guzun R, Beraud N, Pelloux S, Kuznetsov AV, Kogerman L, Kaambre T, Sikk P, Paju K, Peet N, Seppet E, Ojeda C, Tourneur Y, Saks V (2006) Different kinetics of the regulation of respiration in permeabilized cardiomyocytes and in HL-1 cardiac cells. Importance of cell structure/organization for respiration regulation. Biochim Biophys Acta 1757:1597–1606PubMedCrossRefGoogle Scholar
  5. Balaban RS, Kantor HL, Katz LA, Briggs RW (1986) Relation between work and phosphate metabolite in the in vivo paced mammalian heart. Science 232:1121–1123PubMedCrossRefGoogle Scholar
  6. Belitzer V, Tsybakova E (1939) About mechanism of phosphorylation, respiratory coupling. Biochimia 4:516–533Google Scholar
  7. Beraud N, Pelloux S, Usson Y, Kuznetsov AV, Ronot X, Tourneur Y, Saks V (2009) Mitochondrial dynamics in heart cells: very low amplitude high frequency fluctuations in adult cardiomyocytes and flow motion in non beating Hl-1 cells. J Bioenerg Biomembr 41:195–214PubMedCrossRefGoogle Scholar
  8. Bessman SP, Carpenter CL (1985) The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 54:831–862PubMedCrossRefGoogle Scholar
  9. Bessman SP, Fonyo A (1966) The possible role of the mitochondrial bound creatine kinase in regulation of mitochondrial respiration. Biochem Biophys Res Commun 22(5):597–602PubMedCrossRefGoogle Scholar
  10. Bessman SP, Geiger PJ (1981) Transport of energy in muscle: the phosphorylcreatine shuttle. Science 211:448–452PubMedCrossRefGoogle Scholar
  11. Burklen TS, Schlattner U, Homayouni R, Gough K, Rak M, Szeghalmi A, Wallimann T (2006) The creatine kinase/creatine connection to Alzheimer’s disease: CK inactivation, APP–CK complexes and focal creatine deposits. J Biomed Biotechnol 2006(3)35936Google Scholar
  12. Chen C, Ko Y, Delannoy M, Ludtke SJ, Chiu W, Pedersen PL (2004) Mitochondrial ATP synthasome: three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP. J Biol Chem 279:31761–31768PubMedCrossRefGoogle Scholar
  13. De Sousa E, Veksler V, Bigard X, Mateo P, Ventura-Clapier R (2000) Heart failure affects mitochondrial but not myofibrillar intrinsic properties of skeletal muscle. Circulation 102:1847–1853PubMedGoogle Scholar
  14. Dolder M, Walzel B, Speer O, Schlattner U, Wallimann T (2003) Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation. J Biol Chem 278:17760–17766PubMedCrossRefGoogle Scholar
  15. Dos Santos P, Aliev MK, Diolez P, Duclos F, Besse P, Bonoron-Adele S, Sikk P, Canioni P, Saks VA (2000) Metabolic control of contractile performance in isolated perfused rat heart. Analysis of experimental data by reaction: diffusion mathematical model. J Mol Cell Cardiol 32:1703–1734PubMedCrossRefGoogle Scholar
  16. Dzeja PP, Zeleznikar RJ, Goldberg ND (1996) Suppression of creatine kinase catalyzed phosphotransfer results in increased phosphoryl transfer by adenylate kinase in intact skeletal muscle. J Biol Chem 271:12847–12851PubMedCrossRefGoogle Scholar
  17. Dzeja P, Chung S, Terzic A (2007) Integration of adenylate kinase and glycolytic and glycogenolytic circuits in cellular energetic. In: Saks V (ed) Molecular system bioenergetics. Energy for life. Wiley-VCH, Germany, pp 195–264Google Scholar
  18. Eggleton P, Eggleton GP (1927) The inorganic phosphate and a labile form of organic phosphate in the gastrocnemius of the frog. Biochem J 21(1):190–195PubMedGoogle Scholar
  19. Eimre M, Paju K, Pelloux S, Beraud N, Roosimaa M, Kadaja L, Gruno M, Peet N, Orlova E, Remmelkoor R, Piirsoo A, Saks V, Seppet E (2008) Distinct organization of energy metabolism in HL-1 cardiac cell line and cardiomyocytes. Biochim Biophys Acta 1777:514–524PubMedCrossRefGoogle Scholar
  20. Engelborghs Y, Marsh A, Gutfreund H (1975) A quenched-flow study of the reaction catalysed by creatine kinase. Biochem J 151(1):47–50PubMedGoogle Scholar
  21. Fiske CH, Subbarao Y (1927) The nature of the ‘inorganic phosphate’ in voluntary muscle. Science 65(1686):401–403PubMedCrossRefGoogle Scholar
  22. Gellerich F, Saks VA (1982) Control of heart mitochondrial oxygen consumption by creatine kinase: the importance of enzyme localization. Biochem Biophys Res Commun 105(4):1473–1481PubMedCrossRefGoogle Scholar
  23. Gellerich FN, Kunz WS, Bohnensack R (1990) Estimation of flux control coefficients from inhibitor titrations by non-linear regression. FEBS Lett 274:167–170PubMedCrossRefGoogle Scholar
  24. Guerrero K, Wuyam B, Mezin P, Vivodtzev I, Vendelin M, Borel JC, Hacini R, Chavanon O, Imbeaud S, Saks V, Pison C (2005) Functional coupling of adenine nucleotide translocase and mitochondrial creatine kinase is enhanced after exercise training in lung transplant skeletal muscle. Am J Physiol Regul Integr Comp Physiol 289:R1144–R1154PubMedCrossRefGoogle Scholar
  25. Guzun R, Saks V (2010) Review: application of the principles of systems biology and wiener’s cybernetics for analysis of regulation of energy fluxes in muscle cells in vivo. Int J Mol Sci 11(3):982–1019PubMedCrossRefGoogle Scholar
  26. Guzun R, Timohhina N, Tepp K, Monge C, Kaambre T, Sikk P, Kuznetsov AV, Pison C, Saks V (2009) Regulation of respiration controlled by mitochondrial creatine kinase in permeabilized cardiac cells in situ. Importance of system level properties. Biochim Biophys Acta 1787:1089–1105PubMedCrossRefGoogle Scholar
  27. Hill AV, Long CNH, Lupton H (1924) Muscular exercise, lactic acid, and the supply and utilization of oxygen. Proc R Soc Lond B Biol Sci 16:84–137CrossRefGoogle Scholar
  28. Honda H, Tanaka K, Akita N, Haneda T (2002) Cyclical changes in high-energy phosphates during the cardiac cycle by pacing-gated 31P nuclear magnetic resonance. Circ J 66:80–86PubMedCrossRefGoogle Scholar
  29. Ingwall JS (2004) Transgenesis and cardiac energetics: new insights into cardiac metabolism. J Mol Cell Cardiol 37:613–623PubMedCrossRefGoogle Scholar
  30. Ingwall JS (2006) On the hypothesis that the failing heart is energy starved: lessons learned from the metabolism of ATP and creatine. Curr Hypertens Rep 8:457–464PubMedCrossRefGoogle Scholar
  31. Ingwall JS (2009) Energy metabolism in heart failure and remodelling. Cardiovasc Res 81:412–419PubMedCrossRefGoogle Scholar
  32. Ingwall JS, Weiss RG (2004) Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 95:135–145PubMedCrossRefGoogle Scholar
  33. Ivanov II, Korovkin BF, Pinaev GP (1997) Biochemistry of muscles. Meditsina, MoscowGoogle Scholar
  34. Jacobus WE, Lehninger AL (1973) Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. J Biol Chem 248(13):4803–4810Google Scholar
  35. Jacobus WE, Saks VA (1982) Creatine kinase of heart mitochondria: changes in its kinetic properties induced by coupling to oxidative phosphorylation. Arch Biochem Biophys 219(1):167–178PubMedCrossRefGoogle Scholar
  36. Kammermeier H, Roeb E, Jungling E, Meyer B (1990) Regulation of systolic force and control of free energy of ATP-hydrolysis in hypoxic hearts. J Mol Cell Cardiol 22:707–713PubMedCrossRefGoogle Scholar
  37. Kapelko VI, Saks VA, Novikova NA, Golikov MA, Kupriyanov VV, Popovich MI (1989) Adaptation of cardiac contractile function to conditions of chronic energy deficiency. J Mol Cell Cardiol 21:79–83PubMedCrossRefGoogle Scholar
  38. Kholodenko BN, Cascante M, Westerhoff HV (1995) Control theory of metabolic channelling. Mol Cell Biochem 143(2):151–168PubMedCrossRefGoogle Scholar
  39. Klingenberg M (1970) Mitochondria metabolite transport. FEBS Lett 6(3):145–154PubMedCrossRefGoogle Scholar
  40. Koretsune Y, Marban E (1990) Mechanism of ischemic contracture in ferret hearts: relative roles of [Ca2+]i elevation and ATP depletion. Am J Physiol 258:H9–H16PubMedGoogle Scholar
  41. Kresge N, Simoni RD, Hill RL (2005) Otto Fritz Meyerhof and the elucidation of the glycolytic pathway. J Biol Chem 280(4):e3PubMedGoogle Scholar
  42. Kuznetsov AV, Saks VA (1986) Affinity modification of creatine kinase and ATP-ADP translocase in heart mitochondria: determination of their molar stoichiometry. Biochem Biophys Res Commun 134(1):359–366PubMedCrossRefGoogle Scholar
  43. Lenaz G, Genova ML (2007) Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channelling. Am J Physiol Cell Physiol 292:C1221–C1239PubMedCrossRefGoogle Scholar
  44. Lundsgaard E (1930) Untersuhungen uber Muskelkontraktionen ohne Milchsaurebildung. Biochem Z 217:162–177Google Scholar
  45. Mettauer B, Zoll J, Garnier A, Ventura-Clapier R (2006) Heart failure: a model of cardiac and skeletal muscle energetic failure. Pflugers Arch 452:653–666PubMedCrossRefGoogle Scholar
  46. Meyer LE, Machado LB, Santiago AP, da-Silva WS, De Felice FG, Holub O, Oliveira MF, Galina A (2006) Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity. J Biol Chem 281(49):37361–37371Google Scholar
  47. Momken I, Lechene P, Koulmann N, Fortin D, Mateo P, Doan BT, Hoerter J, Bigard X, Veksler V, Ventura-Clapier R (2005) Impaired voluntary running capacity of creatine kinase-deficient mice. J Physiol 565:951–964PubMedCrossRefGoogle Scholar
  48. Mommaerts WF (1969) Energetics of muscular contraction. Physiol Rev 49:427–508PubMedGoogle Scholar
  49. Monge C, Beraud N, Tepp K, Pelloux S, Chahboun S, Kaambre T, Kadaja L, Roosimaa M, Piirsoo A, Tourneur Y, Kuznetsov AV, Saks V, Seppet E (2009) Comparative analysis of the bioenergetics of adult cardiomyocytes and nonbeating HL-1 cells: respiratory chain activities, glycolytic enzyme profiles, and metabolic fluxes. Can J Physiol Pharmacol 87:318–326PubMedCrossRefGoogle Scholar
  50. Morrison JF, James E (1965) The mechanism of the reaction catalysed by adenosine triphosphate-creatine phosphotransferase. Biochem J 97:37–52PubMedGoogle Scholar
  51. Nahrendorf M, Streif JU, Hiller KH, Hu K, Nordbeck P, Ritter O, Sosnovik D, Bauer L, Neubauer S, Jakob PM, Ertl G, Spindler M, Bauer WR (2006) Multimodal functional cardiac MRI in creatine kinase-deficient mice reveals subtle abnormalities in myocardial perfusion and mechanics. Am J Physiol Heart Circ Physiol 290:H2516–H2521PubMedCrossRefGoogle Scholar
  52. Nascimben L, Ingwall JS, Pauletto P, Friedrich J, Gwathmey JK, Saks V, Pessina AC, Allen PD (1996) Creatine kinase system in failing and nonfailing human myocardium. Circulation 94:1894–1901PubMedGoogle Scholar
  53. Neely JR, Rovetto MJ, Whitmer JT, Morgan HE (1973) Effects of ischemia on function and metabolism of the isolated working rat heart. Am J Physiol 225:651–658PubMedGoogle Scholar
  54. Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151PubMedCrossRefGoogle Scholar
  55. Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96:2190–2196PubMedGoogle Scholar
  56. Pedersen PL (2007) Warburg, me and hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39:211–222PubMedCrossRefGoogle Scholar
  57. Pedersen PL, Ko YH, Hong S (2000) ATP synthases in the year 2000: evolving views about the structures of these remarkable enzyme complexes. J Bioenerg Biomembr 32:325–332PubMedCrossRefGoogle Scholar
  58. Pelloux S, Robillard J, Ferrera R, Bilbaut A, Ojeda C, Saks V, Ovize M, Tourneur Y (2006) Non-beating HL-1 cells for confocal microscopy: application to mitochondrial functions during cardiac preconditioning. Prog Biophys Mol Biol 90:270–298PubMedCrossRefGoogle Scholar
  59. Phillips D, Ten Hove M, Schneider JE, Wu CO, Sebag-Montefiore L, Aponte AM, Lygate CA, Wallis J, Clarke K, Watkins H, Balaban RS, Neubauer S (2009) Mice over-expressing the myocardial creatine transporter develop progressive heart failure and show decreased glycolytic capacity. J Mol Cell CardiolGoogle Scholar
  60. Robinson LA, Braimbridge MV, Hearse DJ (1984) Creatine phosphate: an additive myocardial protective and antiarrhythmic agent in cardioplegia. J Thorac Cardiovasc Surg 87:190–200PubMedGoogle Scholar
  61. Rostovtseva TK, Bezrukov SM (2008) VDAC regulation: role of cytosolic proteins and mitochondrial lipids. J Bioenerg Biomembr 40:163–170PubMedCrossRefGoogle Scholar
  62. Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, Bezrukov SM, Sackett DL (2008) Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci USA 105:18746–18751PubMedCrossRefGoogle Scholar
  63. Ruda M, Samarenko MB, Afonskaya NI, Saks VA (1988) Reduction of ventricular arrhythmias by phosphocreatine (Neoton) in patients with acute myocardial infarction. Am Heart J 116:393–397PubMedCrossRefGoogle Scholar
  64. Saks V (ed) (2007) Molecular system bioenergetics. Energy for life. Wiley-VCH, GermanyGoogle Scholar
  65. Saks V, Strumia E (1993) Phosphocreatine: molecular and cellular aspects of the mechanism of cardioprotective action. Curr Therapeut Res 53:565–598CrossRefGoogle Scholar
  66. Saks VA, Rosenshtraukh LV, Undrovinas AI, Smirnov VN, Chazov EI (1976) Studies of energy transport in heart cells. Intracellular creatine content as a regulatory factor of frog heart energetic and force of contraction. Biochem Med 16:21–36PubMedCrossRefGoogle Scholar
  67. Saks VA, Rosenshtraukh LV, Smirnov VN, Chazov EI (1978) Role of creatine phosphokinase in cellular function and metabolism. Can J Physiol Pharmacol 56:691–706PubMedCrossRefGoogle Scholar
  68. Saks V, Belikova Y, Vasilyeva E, Kuznetsov A, Fontaine E, Keriel C, Leverve X (1995) Correlation between degree of rupture of outer mitochondrial membrane and changes of kinetics of regulation of respiration by ADP in permeabilized heart and liver cells. Biochem Biophys Res Commun 208(3):919–926PubMedCrossRefGoogle Scholar
  69. Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T, Tranqui L, Olivares J, Winkler K, Wiedemann F, Kunz WS (1998) Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 184(1–2):81–100Google Scholar
  70. Saks VA, Kaambre T, Sikk P, Eimre M, Orlova E, Paju K, Piirsoo A, Appaix F, Kay L, Regitz-Zagrosek V, Fleck E, Seppet E (2001) Intracellular energetic units in red muscle cells. Biochem J 356:643–657PubMedCrossRefGoogle Scholar
  71. Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T (2006) Cardiac system bioenergetics: metabolic basis of the Frank–Starling law. J Physiol 571:253–273PubMedCrossRefGoogle Scholar
  72. Saks V, Monge C, Anmann T, Dzeja P (2007a) Integrated and organized cellular energetic systems: theories of cell energetics, compartmentation and metabolic channelling. In: Saks V (ed) Molecular system bioenergetics. Energy for life. Wiley-VCH, Germany, pp 59–110CrossRefGoogle Scholar
  73. Saks VA, Dzeja P, Guzun R, Aliev MK, Vendelin M, Terzic A, Wallimann T (2007b) System analysis of cardiac energetics–excitation–contraction coupling: integration of mitochondrial respiration, phosphotransfer pathways, metabolic pacing and substrate supply in the heart. In: Saks V (ed) Molecular system bioenergetics. Energy for life. Wiley-VCH, Germany, pp 367–405CrossRefGoogle Scholar
  74. Saks V, Beraud N, Wallimann T (2008) Metabolic compartmentation—a system level property of muscle cells. Int J Mol Sci 9:751–767PubMedCrossRefGoogle Scholar
  75. Schlattner U, Gehring F, Vernoux N, Tokarska-Schlattner M, Neumann D, Marcillat O, Vial C, Wallimann T (2004) C-terminal lysines determine phospholipid interaction of sarcomeric mitochondrial creatine kinase. J Biol Chem 279:24334–24342PubMedCrossRefGoogle Scholar
  76. Semenovsky ML, Shumakov VI, Sharov VG, Mogilevsky GM, Asmolovsky AV, Makhotina LA, Saks VA (1987) Protection of ischemic myocardium by exogenous phosphocreatine. J Thoracic Cardiovasc Surg 94:762–769Google Scholar
  77. Shen W, Spindler M, Higgins MA, Jin N, Gill RM, Bloem LJ, Ryan TP, Ingwall JS (2005) The fall in creatine levels and creatine kinase isozyme changes in the failing heart are reversible: complex post-transcriptional regulation of the components of the CK system. J Mol Cell Cardiol 39:537–544PubMedCrossRefGoogle Scholar
  78. Spindler M, Illing B, Horn M, de Groot M, Ertl G, Neubauer S (2001) Temporal fluctuations of myocardia high-energy phosphate metabolite with the cardiac cycle. Basic Res Cardiol 96:553–556PubMedCrossRefGoogle Scholar
  79. Spindler M, Meyer K, Stromer H, Leupold A, Boehm E, Wagner H, Neubauer S (2004) Creatine kinase-deficient hearts exhibit increased susceptibility to ischemia–reperfusion injury and impaired calcium homeostasis. Am J Physiol Heart Circ Physiol 287:H1039–H1045PubMedCrossRefGoogle Scholar
  80. Starling E, Visscher HMB (1926) The regulation of the energy output of the heart. J Physiol 62(3):243–261Google Scholar
  81. ten Hove M, Lygate CA, Fischer A, Schneider JE, Sang AE, Hulbert K, Sebag-Montefiore L, Watkins H, Clarke K, Isbrandt D, Wallis J, Neubauer S (2005) Reduced inotropic reserve and increased susceptibility to cardiac ischemia/reperfusion injury in phosphocreatine-deficient guanidinoacetate-N-methyltransferase knockout mice. Circulation 111:2477–2485PubMedCrossRefGoogle Scholar
  82. Tian R, Ingwall JS (1996) Energetic basis for reduced contractile reserve in isolated rat hearts. Am J Physiol 270:H1207–H1216PubMedGoogle Scholar
  83. Timohhina N, Guzun R, Tepp K, Monge C, Varikmaa M, Vija H, Sikk P, Kaambre T, Sackett D, Saks V (2009) Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: some evidence for mitochondrial interactosome. J Bioenerg Biomembr 41(3):259–275PubMedCrossRefGoogle Scholar
  84. Vendelin M, Kongas O, Saks V (2000) Regulation of mitochondrial respiration in heart cells analyzed by reaction-diffusion model of energy transfer. Am J Physiol Cell Physiol 278:C747–C764PubMedGoogle Scholar
  85. Vendelin M, Lemba M, Saks VA (2004) Analysis of functional coupling: mitochondrial creatine kinase and adenine nucleotide translocase. Biophys J 87:696–713PubMedCrossRefGoogle Scholar
  86. Ventura-Clapier R, De Sousa E, Veksler V (2002) Metabolic myopathy in heart failure. News Physiol Sci 17:191–196PubMedGoogle Scholar
  87. Vonck J, Schafer E (2009) Supramolecular organization of protein complexes in the mitochondrial inner membrane. Biochim Biophys Acta 1793:117–124Google Scholar
  88. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281(Pt 1):21–40PubMedGoogle Scholar
  89. Wallimann T, Tokarska-Schlattner M, Neumann D, Epand RF, Andres RH, Widmer HR, Hornemann T, Saks V, Agarkova I, Schlattner U (2007) The phosphocreatine circuit: molecular and cellular physiology of creatine kinases, sensitivity to free radicals, and enhancement by creatine supplementation. In: Saks V (ed) Molecular system bioenergetics. Energy for life. Wiley-VCH, Germany, pp 195–264CrossRefGoogle Scholar
  90. Wallis J, Lygate CA, Fischer A, ten Hove M, Schneider JE, Sebag-Montefiore L, Dawson D, Hulbert K, Zhang W, Zhang MH, Watkins H, Clarke K, Neubauer S (2005) Supranormal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure: insights from creatine ransporteroverexpressing transgenic mice. Circulation 112:3131–3139PubMedCrossRefGoogle Scholar
  91. Walsh B, Tonkonogi M, Sahlin K (2001) Effect of endurance training on oxidative and antioxidative function in human permeabilized muscle fibres. Pflugers Arch 442:420–425Google Scholar
  92. Warburg O (1956) On respiratory impairment in cancer cells. Science (New York) 124:269–270Google Scholar
  93. Weiss RG, Gerstenblith G, Bottomley PA (2005) ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci USA 102:808–813PubMedCrossRefGoogle Scholar
  94. Williamson JR, Ford C, Illingworth J, Safer B (1976) Coordination of citric acid cycle activity with electron transport flux. Circ Res 38:S139–S151Google Scholar
  95. Woo YJ, Grand TJ, Zentko S, Cohen JE, Hsu V, Atluri P, Berry MF, Taylor MD, Moise MA, Fisher O, Kolakowski S (2005) Creatine phosphate administration preserves myocardial function in a model of off-pump coronary revascularization. J Cardiovasc Surg (Torino) 46:297–305Google Scholar
  96. Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213PubMedGoogle Scholar
  97. Ventura-Clapier R, Garnier A, Veksler V Energy metabolism in heart failure. J Physiol 555:1–13Google Scholar
  98. Zoll J, Sanchez H, N’Guessan B, Ribera F, Lampert E, Bigard X, Serrurier B, Fortin D, Geny B, Veksler V, Ventura-Clapier R, Mettauer B (2002) Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J Physiol 543:191–200PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • R. Guzun
    • 1
  • N. Timohhina
    • 2
  • K. Tepp
    • 2
  • M. Gonzalez-Granillo
    • 1
  • I. Shevchuk
    • 2
  • V. Chekulayev
    • 2
  • A. V. Kuznetsov
    • 3
  • T. Kaambre
    • 2
  • V. A. Saks
    • 1
    • 2
  1. 1.Laboratory of Fundamental and Applied Bioenergetics, INSERM U884Joseph Fourier UniversityGrenoble Cedex 9France
  2. 2.Laboratory of BioenergeticsNational Institute of Chemical Physics and BiophysicsTallinnEstonia
  3. 3.Cardiac Research Laboratory, Department of Cardiac SurgeryInnsbruck Medical UniversityInnsbruckAustria

Personalised recommendations