Adhihetty PJ, Beal MF (2008) Creatine and its potential therapeutic value for targeting cellular energy impairment in neurodegenerative diseases. Neuromol Med 10:275–290
Article
CAS
Google Scholar
Adhihetty PJ, Irrcher I, Joseph AM, Ljubicic V, Hood DA (2003) Plasticity of skeletal muscle mitochondria in response to contractile activity. Exp Physiol 88:99–107
PubMed
Article
CAS
Google Scholar
Aksenov M, Aksenova M, Butterfield DA, Markesbery WR (2000) Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem 74:2520–2527
PubMed
Article
CAS
Google Scholar
Andreassen OA, Dedeoglu A, Ferrante RJ, Jenkins BG, Ferrante KL, Thomas M et al (2001) Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiol Dis 8:479–491
PubMed
Article
CAS
Google Scholar
Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76:329–343
PubMed
Article
CAS
Google Scholar
Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810
PubMed
Article
CAS
Google Scholar
Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hanbleton MA et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662
PubMed
Article
CAS
Google Scholar
Beal MF (1996) Mitochondria, free radicals, and neurodegeneration. Curr Opin Neurobiol 6:661–666
PubMed
Article
CAS
Google Scholar
Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2:325–334
PubMed
Article
CAS
Google Scholar
Beal MF (2009) Therapeutic approaches to mitochondrial dysfunction in Parkinson’s disease. Parkinsonism Relat Disord 15:S189–S194
PubMed
Article
Google Scholar
Beal MF, Ferrante RJ (2004) Experimental therapeutics in transgenic mouse models of Huntington's Disease. Nat Rev Neurosci 5:373–384
Google Scholar
Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropionic acid. J Neurosci 13:4181–4192
Google Scholar
Bindoff LA, Birch-Machin M, Cartlidge NE, Parker WD Jr, Turnbull DM (1989) Mitochondrial function in Parkinson’s disease. Lancet 2:49
Google Scholar
Bonda DJ, Wang X, Perry G, Nunomura A, Tabaton M, Zhu X et al (2010) Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology 59:290–294
PubMed
Article
CAS
Google Scholar
Brewer GJ, Wallimann TW (2000) Protective effect of the energy precursor creatine against toxicity of glutamate and beta-amyloid in rat hippocampal neurons. J Neurochem 74:1968–1978
PubMed
Article
CAS
Google Scholar
Brouillet E, Jenkins BG, Hyman BT, Ferrante RJ, Kowall NW, Srivastava R, Roy DS, Rosen BR, Beal MF (1993) Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J Neurochem 60:356–359
Google Scholar
Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willig A, Kowall NW, Beal ME (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 92:7105–7109
Google Scholar
Browne SE, Beal MF (2006) Oxidative damage in Huntington’s disease pathogenesis. Antioxid Redox Signal 8:2061–2073
PubMed
Article
CAS
Google Scholar
Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653
Google Scholar
Ceddia RB, Sweeney G (2004) Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells. J Physiol 555:409–421
PubMed
Article
CAS
Google Scholar
Chaturvedi RK, Adhietty P, Shukla S, Hennessy T, Calingasan N, Yang L et al (2009) Impaired PGC-1alpha function in muscle in Huntington’s disease. Hum Mol Genet 18:3048–3065
PubMed
Article
CAS
Google Scholar
Csukly K, Ascah A, Matas J, Gardner PF, Fontaine E, Burelle Y (2006) Muscle denervation promotes opening of the permeability transition pore and increases the expression of cyclophilin D. J Physiol 574:319–327
PubMed
Article
CAS
Google Scholar
Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69
PubMed
Article
CAS
Google Scholar
David S, Shoemaker M, Haley BE (1998) Abnormal properties of creatine kinase in Alzheimer’s disease brain: correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Brain Res Mol Brain Res 54:276–287
PubMed
Article
CAS
Google Scholar
de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL et al (2010) Caspase activation precedes and leads to tangles. Nature 464:1201–1204
PubMed
Article
Google Scholar
Ferrante RJ, Andreassen OA, Jenkins BG, Dedeoglu A, Kuemmerle S, Kubilus JK et al (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 20:4389–4397
PubMed
CAS
Google Scholar
Gallant M, Rak M, Szeghalmi A, Del Bigio MR, Westaway D, Yang J et al (2006) Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue. J Biol Chem 281:508
Google Scholar
Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312
PubMed
Article
CAS
Google Scholar
Groeneveld GJ, Van Kan HJ, Kalmijn S, Veldink JH, Guchelaar HJ, Wokke JH et al (2003) Riluzole serum concentrations inpatients with ALS: associations with side effects and symptoms. Neurology 61:1141–1143
PubMed
CAS
Google Scholar
Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775
PubMed
Article
CAS
Google Scholar
Hensley K, Butterfield DA, Mattson M, Aksenova M, Harris M, Wu JF et al (1995) A model for beta-amyloid aggregation and neurotoxicity based on the free radical generating capacity of the peptide: implications of “molecular shrapnel” for Alzheimer’s disease. Proc West Pharmacol Soc 38:113–120
PubMed
CAS
Google Scholar
Hersch SM, Gevorkian S, Marder K, Moskowitz C, Feigin A, Cox M et al (2006) Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2’dG. Neurology 66:250–252
PubMed
Article
CAS
Google Scholar
Hervias I, Beal MF, Manfredi G (2006) Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle Nerve 33:598–608
PubMed
Article
CAS
Google Scholar
Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR (1993) Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43:2689–2695
Google Scholar
Juhn MS, Tarnopolsky M (1998a) Oral creatine supplementation and athletic performance. A critical review. Clin J Sport Med 8:286–297
PubMed
Article
CAS
Google Scholar
Juhn MS, Tarnopolsky M (1998b) Potential side effects of creatine supplementation: a critical review. Clin J Sport Med 8:298–304
PubMed
Article
CAS
Google Scholar
Kim J, Moody JP, Edgerly CK, Bordiuk OL, Cormier K, Smith K, Beal MF, Ferrante RJ (2010) Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease. Hum Mol Genet 19(20):3919–3935
Google Scholar
Klivenyi P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, Andreassen OA et al (1999) Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 5:347–350
PubMed
Article
CAS
Google Scholar
Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF (1997) Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol 4:160–165
Google Scholar
Krige D, Carroll MT, Cooper JM, Marsden CD, Schapira AH, The Royal Kings and Queens Parkinson Disease Research Group (1992) Platelet mitochondrial function in Parkinson’s disease. Ann Neurol 32:782–788
PubMed
Article
CAS
Google Scholar
Li X, Burklen T, Yuan X, Schlattner U, Desiderio DM, Wallimann T et al (2006) Stabilization of ubiquitous mitochondrial creatine kinase preprotein by APP family proteins. Mol Cell Neurosci 31:263–272
PubMed
Article
CAS
Google Scholar
Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795
PubMed
Article
CAS
Google Scholar
Matthews RT, Yang L, Jenkins BG, Ferrante RJ, Rosen BR, Kaddurah-Daouk R et al (1998) Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 18:156–163
PubMed
CAS
Google Scholar
Matthews RT, Ferrante RJ, Klivenyi P, Yang L, Klein AM, Mueller G et al (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157:142–149
PubMed
Article
CAS
Google Scholar
McGill JK, Beal MF (2006) PGC-1alpha, a new therapeutic target in Huntington’s disease? Cell 127:465–468
PubMed
Article
CAS
Google Scholar
Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36:747–751
PubMed
Article
CAS
Google Scholar
Mihic S, MacDonald JR, McKenzie S, Tarnopolsky MA (2000) Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Med Sci Sports Exerc 32:291–296
PubMed
Article
CAS
Google Scholar
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298
PubMed
Article
Google Scholar
NINDS NET-PD Investigators (2006) A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology 66:664–671
Article
Google Scholar
O’Gorman E, Beutner G, Dolder M, Koretsky AP, Brdiczka D, Wallimann T (1997) The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett 414:253–257
Google Scholar
Okamoto S, Pouladi MA, Talantova M, Yao D, Xia P, Ehrnhoefer DE, Zaidi R, Clemente A, Kaul M, Graham RK, Zhang D, Vincent Chen HS, Tong G, Hayden MR, Lipton SA (2009) Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med 15:1407–1413
Google Scholar
Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723
Google Scholar
Pasinelli P, Belford ME, Lennon N, Bacskai BJ, Hyman BT, Trotti D et al (2004) Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43:19–30
PubMed
Article
CAS
Google Scholar
Pedrini S, Sau D, Guareschi S, Bogush M, Brown RH Jr, Naniche N et al (2010) ALS-linked mutant SOD1 damages mitochondria by promotion conformational changes in Bcl-2. Human Mol Genet 19:2974–2986
Article
CAS
Google Scholar
Peng TI, Greenamyre JT (1998) Privileged access to mitochondria of calcium influx through N-methyl-d-aspartate receptors. Mol Pharmacol 53:974–980
PubMed
CAS
Google Scholar
Pettegrew JW, Panchalingam K, Klunk WE, McClure RJ, Muenz LR (1994) Alterations of cerebral metabolism in probable Alzheimer’s disease: a preliminary study. Neurobiol Aging 15:117–132
PubMed
Article
CAS
Google Scholar
Poortmans JR, Auquier H, Renaut V, Durussel A, Saugy M, Brisson GR (1997) Effect of short-term creatine supplementation on renal responses in men. Eur J Appl Physiol 76:566–567
Article
CAS
Google Scholar
Poortsmans JR, Francaux M (2000) Adverse effects of creatine supplementation: fact or fiction? Sports Med 30:155–170
Article
Google Scholar
Primeau AJ, Adhihetty PJ, Hood DA (2002) Apoptosis in heart and skeletal muscle. Can J Appl Physiol 27:349–395
PubMed
Article
CAS
Google Scholar
Qin W, Haroutunian V, Katsel P, Cardozo CP, Ho L, Buxbaum JD et al (2009) PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch Neurol 66:352–361
PubMed
Article
Google Scholar
Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N England J Med 362:329–344
Article
CAS
Google Scholar
Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondria complex 1 deficiency in Parkinson’s disease. J Neurochem 54:823–827
Google Scholar
Shefner JM, Cudkowicz ME, Schoenfeld D, Conrad T, Taft J, Chilton M et al (2004) A clinical trial of creatine in ALS. Neurology 63:1656–1661
PubMed
CAS
Google Scholar
Sora I, Richman J, Santoro G, Wei H, Wang Y, Vanderah T et al (1994) The cloning and expression of a human creatine transporter. Biochem Biophys Res Commun 204:419–427. doi:10.1006/bbrc.1994.2475
PubMed
Article
CAS
Google Scholar
Steenge GR, Lambourne J, Casey A, Macdonald IA, Greenhaff PL (1998) Stimulatory effect of insulin on creatine accumulation in human skeletal muscle. Am J Physiol 275:E974–E979
PubMed
CAS
Google Scholar
Stockler S, Hanefeld F (1997) Guanidinoacetate methyltransferase deficiency: a newly recognized inborn error of creatine biosynthesis. Wien Klin Wochenschr 109:86–88
PubMed
CAS
Google Scholar
Stockler S, Marescau B, De Deyn PP, Trijbels JM, Hanefeld F (1997) Guanidino compounds in guanidinoacetate methyltransferase deficiency, a new inborn error of creatine synthesis. Metabolism 46:1189–1193
PubMed
Article
CAS
Google Scholar
Tarnopolsky MA, Beal MF (2001) Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol 49:561–574
PubMed
Article
CAS
Google Scholar
Tarnopolsky MA, Safdar A (2008) The potential benefits of creatine and conjugated linoleic acid as adjuncts to resistance training in older adults. Appl Physiol Nutr Metab 33:213–227. doi:10.1139/H07-142
PubMed
Article
CAS
Google Scholar
Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(2):R183–R194
PubMed
Article
CAS
Google Scholar
Van der Knaap MS, Verhoeven NM, Maaswinkel-Mooij P, Pouwels PJ, Onkenhout W, Peeters EA et al (2000) Mental retardation and behavioral problems as presenting signs of a creatine synthesis defect. Ann Neurol 47:540–543
PubMed
Article
Google Scholar
Wallimann T, Hemmer W (1994) Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 133–134:193–220. doi:101007/BF01267955
PubMed
Article
Google Scholar
Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands. The ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281(Pt 1):21–40
PubMed
CAS
Google Scholar
Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF, Lazarowski ER et al (2006) Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metabolism 4:349–362
PubMed
Article
CAS
Google Scholar
Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA et al (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14:1105–1116
PubMed
Article
CAS
Google Scholar
Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ et al (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 99:15983–15987
PubMed
Article
CAS
Google Scholar