Skip to main content

Importance of exercise immunology in health promotion

Abstract

Chronic physical exercise with adequate intensity and volume associated with sufficient recovery promotes adaptations in several physiological systems. While intense and exhaustive exercise is considered an important immunosuppressor agent and increases the incidence of upper respiratory tract infections (URTI), moderate regular exercise has been associated with significant disease protection and is a complementary treatment of many chronic diseases. The effects of chronic exercise occur because physical training can induce several physiological, biochemical and psychological adaptations. More recently, the effect of acute exercise and training on the immunological system has been discussed, and many studies suggest the importance of the immune system in prevention and partial recovery in pathophysiological situations. Currently, there are two important hypotheses that may explain the effects of exercise and training on the immune system. These hypotheses including (1) the effect of exercise upon hormones and cytokines (2) because exercise can modulate glutamine concentration. In this review, we discuss the hypothesis that exercise may modulate immune functions and the importance of exercise immunology in respect to chronic illnesses, chronic heart failure, malnutrition and inflammation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Agostini F, Biolo G (2010) Effect of physical activity on glutamine metabolism. Curr Opin Clin Nutr Metab Care 13:58–64

    PubMed  Article  CAS  Google Scholar 

  • Akerstrom TC, Pedersen BK (2007) Strategies to enhance immune function for marathon runners: what can be done? Sports Med 37:416–419

    PubMed  Article  Google Scholar 

  • Bacurau RF, Bassit RA, Sawada L, Navarro F, Martins E Jr, Costa Rosa LF (2002) Carbohydrate supplementation during intense exercise and the immune response of cyclists. Clin Nutr 21:423–429

    PubMed  Article  CAS  Google Scholar 

  • Bassit RA, Sawada LA, Bacurau RF, Navarro F, Costa Rosa LF (2000) The effect of BCAA supplementation upon the immune response of triathletes. Med Sci Sports Exerc 32:1214–1219

    PubMed  Article  CAS  Google Scholar 

  • Bassit RA, Sawada LA, Bacurau RF, Navarro F, Martins E Jr, Santos RV, Caperuto E, Costa Rosa LF (2002) Branched-chain amino acid supplementation and the immune response of long-distance athletes. Nutrition 18:376–379

    PubMed  Article  CAS  Google Scholar 

  • Batista ML Jr, Santos RV, Cunha LM, Mattos K, Oliveira EM, Seelaender MC, Costa Rosa LF (2006) Changes in the pro-inflammatory cytokine production and peritoneal macrophage function in rats with chronic heart failure. Cytokine 34:284–290

    PubMed  Article  CAS  Google Scholar 

  • Batista ML Jr, Santos RV, Oliveira EM, Seelaender MC, Costa Rosa LF (2007) Endurance training restores peritoneal macrophage function in post-MI congestive heart failure rats. J Appl Physiol 102:2033–2039

    PubMed  Article  CAS  Google Scholar 

  • Batista ML Jr, Santos RV, Lopes RD, Lopes AC, Costa Rosa LF, Seelaender MC (2008) Endurance training modulates lymphocyte function in rats with post-MI CHF. Med Sci Sports Exerc 40:549–556

    PubMed  Article  Google Scholar 

  • Bradfield RB, Paulos J, Grossman L (1971) Energy expenditure and heart rate of obese high school girls. Am J Clin Nutr 24:1482–1488

    PubMed  CAS  Google Scholar 

  • Bruunsgaard H, Hartkopp A, Mohr T, Konradsen H, Heron I, Mordhorst CH (1997) In vivo cell-mediated immunity and vaccination response following prolonged, intense exercise. Med Sci Sports Exerc 29:1176–1181

    PubMed  Article  CAS  Google Scholar 

  • Castell LM (2002) Can glutamine modify the apparent immunodepression observed after prolonged, exhaustive exercise? Nutrition 18:371–375

    PubMed  Article  CAS  Google Scholar 

  • Castell L (2003) Glutamine supplementation in vitro and in vivo, in exercise and in immunodepression. Sports Med 33:323–345

    PubMed  Article  Google Scholar 

  • Castell LM, Newsholme EA (1998) Glutamine and the effects of exhaustive exercise upon the immune response. Can J Physiol Pharmacol 76:524–532

    PubMed  Article  CAS  Google Scholar 

  • Castell LM, Newsholme EA (2001) The relation between glutamine and the immunodepression observed in exercise. Amino Acids 20:49–61

    PubMed  Article  CAS  Google Scholar 

  • Choquette G, Ferguson RJ (1973) Blood pressure reduction in “borderline” hypertensives following physical training. Can Med Assoc J 108:699–703

    PubMed  CAS  Google Scholar 

  • Cornelissen VA, Fagard RH (2002) Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension 46:667–675

    Article  Google Scholar 

  • Costa Rosa LF (2004) Exercise as a time-conditioning effector in chronic disease: a complementary treatment strategy. Evid Based Complement Alternat Med 1:63–70

    PubMed  Article  Google Scholar 

  • Cunha WD, Friedler G, Vaisberg M, Egami MI, Costa Rosa LF (2003) Immunosuppression in undernourished rats: the effect of glutamine supplementation. Clin Nutr 22:453–457

    PubMed  Article  CAS  Google Scholar 

  • Dachs R (2007) Exercise is an effective intervention in overweight and obese patients. Am Fam Physician 75:1333–1335

    PubMed  Google Scholar 

  • Decombaz J, Reinhardt P, Anantharaman K, von Glutz G, Poortmans JR (1979) Biochemical changes in a 100 km run: free amino acids, urea, and creatinine. Eur J Appl Physiol Occup Physiol 41:61–72

    PubMed  Article  CAS  Google Scholar 

  • dos Santos Cunha WD, Giampietro MV, De Souza DF, Vaisberg M, Seelaender MC, Rosa LF (2004) Exercise restores immune cell function in energy-restricted rats. Med Sci Sports Exerc 36:2059–2064

    PubMed  Article  Google Scholar 

  • dos Santos RV, Caperuto EC, de Mello MT, Batista ML Jr, Rosa LF (2009) Effect of exercise on glutamine synthesis and transport in skeletal muscle from rats. Clin Exp Pharmacol Physiol 36:770–775

    PubMed  Article  CAS  Google Scholar 

  • Driver S, Taylor SR (1996) Sleep disturbances and exercise. Sports Med 21:1–6

    PubMed  Article  CAS  Google Scholar 

  • Eckstein RW (1957) Effect of exercise and coronary artery narrowing on coronary collateral circulation. Circ Res 5:230–235

    PubMed  CAS  Google Scholar 

  • Fagard RH, Cornelissen VA (2007) Effect of exercise on blood pressure control in hypertensive patients. Eur J Cardiovasc Prev Rehabil 14:12–17

    PubMed  Article  Google Scholar 

  • Garrett-Cox RG, Stefanutti G, Booth C, Klein NJ, Pierro A, Eaton S (2009) Glutamine decreases inflammation in infant rat endotoxemia. J Pediatr Surg 44:523–529

    PubMed  Article  Google Scholar 

  • Gleeson M (2008) Dosing and efficacy of glutamine supplementation in human exercise and sport training. J Nutr 138:2045S–2049S

    PubMed  CAS  Google Scholar 

  • Guggilam A, Haque M, Kerut EK, McIlwain E, Lucchesi P, Seghal I, Francis J (2007) TNF-a blockade decreases oxidative stress in the paraventricular nucleus and attenuates sympathoexcitation in heart failure rats. Am J Physiol 293:H599–H609

    CAS  Google Scholar 

  • Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA, Heath GW, Thompson PD, Bauman A (2007) Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 116:1081–1093

    PubMed  Article  Google Scholar 

  • Heller EM (1967) Rehabilitation after myocardial infarction: practical experience with a graded exercise program. Can Med Assoc J 97:22–27

    PubMed  CAS  Google Scholar 

  • Hiscock N, Pedersen BK (2002) Exercise-induced immunodepression-plasma glutamine is not the link. J Appl Physiol 93:813–822

    PubMed  CAS  Google Scholar 

  • Huang YC (2001a) Malnutrition in the critically ill. Nutrition 17:263–264

    PubMed  Article  CAS  Google Scholar 

  • Huang YC (2001b) Malnutrition in the critically ill. Nutrition 17:745–746

    PubMed  Article  CAS  Google Scholar 

  • Jennen C, Uhlenbruck G (2004) Exercise and life-satisfactory-fitness: complementary strategies in the prevention and rehabilitation of illnesses. Evid Based Complement Alternat Med 1:157–165

    PubMed  Article  Google Scholar 

  • Koyama K, Kaya M, Tsujita J, Hori S (1998) Effects of decreased plasma glutamine concentrations on peripheral lymphocyte proliferation in rats. Eur J Appl Physiol Occup Physiol 77:25–31

    PubMed  Article  CAS  Google Scholar 

  • Kretzmann NA, Fillmann H, Mauriz JL, Marroni CA, Marroni N, González-Gallego J, Tuñón MJ (2008) Effects of glutamine on proinflammatory gene expression and activation of nuclear factor kappa B and signal transducers and activators of transcription in TNBS-induced colitis. Inflamm Bowel Dis 14:1504–1513

    PubMed  Article  Google Scholar 

  • Lira FS, Koyama CH, Yamashita AS, Rosa JC, Zanchi NE, Batista ML, Seelaender MC Jr (2009a) Chronic exercise decreases cytokine production in healthy rat skeletal muscle. Cell Biochem Funct 27:458–461

    PubMed  Article  CAS  Google Scholar 

  • Lira FS, Rosa JC, Yamashita AS, Koyama CH, Batista ML Jr, Seelaender M (2009b) Endurance training induces depot-specific changes in IL-10/TNF-alpha ratio in rat adipose tissue. Cytokine 45:80–85

    PubMed  Article  CAS  Google Scholar 

  • Lira FS, Rosa JC, Zanchi NE, Yamashita AS, Lopes RD, Lopes AC, Batista ML Jr, Seelaender M (2009c) Regulation of inflammation in the adipose tissue in cancer cachexia: effect of exercise. Cell Biochem Funct 27:71–75

    PubMed  Article  CAS  Google Scholar 

  • Lira FS, Rosa JC, Pimentel GD, Tarini VA, Arida RM, Faloppa F, Alves ES, do Nascimento CO, Oyama LM, Seelaender M, de Mello MT, Santos RV (2010) Inflammation and adipose tissue: effects of progressive load training in rats. Lipids Health Dis 9:109

    Google Scholar 

  • Mathur N, Pedersen BK (2008) Exercise as a mean to control low-grade systemic inflammation. Mediators Inflamm 2008:109502

    PubMed  Article  Google Scholar 

  • McGavock JM, Eves ND, Mandic S, Glenn NM, Quinney HA, Haykowsky MJ (2004) The role of exercise in the treatment of cardiovascular disease associated with type 2 diabetes mellitus. Sports Med 34:27–48

    PubMed  Article  Google Scholar 

  • Moreira A, Kekkonen RA, Delgado L, Fonseca J, Korpela R, Haahtela T (2007) Nutritional modulation of exercise-induced immunodepression in athletes: asystematic review and meta-analysis. Eur J Clin Nutr 61:443–460

    PubMed  Article  CAS  Google Scholar 

  • Nagatomi R (2006) The implication of alterations in leukocyte subset counts on immune function. Exerc Immunol Rev 12:54–71

    PubMed  Google Scholar 

  • Negro M, Giardina S, Marzani B, Marzatico F (2008) Branched-chain amino acid supplementation does not enhance athletic performance but affects muscle recovery and the immune system. J Sports Med Phys Fitness 48:347–351

    PubMed  CAS  Google Scholar 

  • Newsholme EA, Calder PC (1997) The proposed role of glutamine in some cells of the immune system and speculative consequences for the whole animal. Nutrition 13:728–730

    PubMed  Article  CAS  Google Scholar 

  • Newsholme EA, Crabtree B, Ardawi MS (1985a) Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Q J Exp Physiol 70:473–489

    PubMed  CAS  Google Scholar 

  • Newsholme EA, Crabtree B, Ardawi MS (1985b) The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci Rep 5:393–400

    PubMed  Article  CAS  Google Scholar 

  • Newsholme P, Costa Rosa LF, Newsholme EA, Curi R (1996) The importance of fuel metabolism to macrophage function. Cell Biochem Funct 14:1–10

    PubMed  Article  CAS  Google Scholar 

  • Nicklas BJ, Hsu FC, Brinkley TJ, Church T, Goodpaster BH, Kritchevsky SB, Pahor M (2008) Exercise training and plasma C-reactive protein and interleukin-6 in elderly people. J Am Geriatr Soc 56:2045–2052

    PubMed  Article  Google Scholar 

  • Nieman DC (1997) Immune response to heavy exertion. J Appl Physiol 82:1385–1394

    PubMed  CAS  Google Scholar 

  • Nieman DC (2007) Marathon training and immune function. Sports Med 37:412–415

    PubMed  Article  Google Scholar 

  • Ortega E (2003) Neuroendocrine mediators in the modulation of phagocytosis by exercise: physiological implications. Exerc Immunol Rev 9:70–93

    PubMed  Google Scholar 

  • Pallaro AN, Roux ME, Slobodianik NH (2001) Nutrition disorders and immunologic parameters: study of the thymus in growing rats. Nutrition 17:724–728

    PubMed  Article  CAS  Google Scholar 

  • Parry-Billings M, Newsholme EA (1991) The possible role of glutamine substrate cycles in skeletal muscle. Biochem J 279:327–328

    PubMed  CAS  Google Scholar 

  • Parry-Billings M, Leighton B, Dimitriadis GD, Bond J, Newsholme EA (1990) Effects of physiological and pathological levels of glucocorticoids on skeletal muscle glutamine metabolism in the rat. Biochem Pharmacol 40:1145–1148

    PubMed  Article  CAS  Google Scholar 

  • Parry-Billings M, Budgett R, Koutedakis Y, Blomstrand E, Brooks S, Williams C, Calder PC, Pilling S, Baigrie R, Newsholme EA (1992) Plasma amino acid concentrations in the overtraining syndrome: possible effects on the immune system. Med Sci Sports Exerc 24:1353–1358

    PubMed  CAS  Google Scholar 

  • Pedersen BK, Hoffman-Goetz L (2000) Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 80:1055–1081

    PubMed  CAS  Google Scholar 

  • Pedersen BK, Saltin B (2006) Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports 16(Suppl 1):3–63

    PubMed  Article  Google Scholar 

  • Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162

    PubMed  Article  CAS  Google Scholar 

  • Riess KJ, Gourishankar S, Oreopoulos A, Jones LW, McGavock JM, Lewanczuk RZ, Haykowsky MJ (2006) Impaired arterial compliance and aerobic endurance in kidney transplant recipients. Transplantation 82:920–923

    PubMed  Article  Google Scholar 

  • Robson PJ, Blannin AK, Walsh NP, Castell LM, Gleeson M (1999) Effects of exercise intensity, duration and recovery on in vitro neutrophil function in male athletes. Int J Sports Med 20:128–135

    PubMed  CAS  Google Scholar 

  • Rohde T, Ullum H, Rasmussen JP, Kristensen JH, Newsholme E, Pedersen BK (1995) Effects of glutamine on the immune system: influence of muscular exercise and HIV infection. J Appl Physiol 79:146–150

    PubMed  CAS  Google Scholar 

  • Rosa Neto JC, Lira FS, Oyama LM, Zanchi NE, Yamashita AS, Batista ML Jr, Oller do Nascimento CM, Seelaender M (2009) Exhaustive exercise causes an anti-inflammatory effect in skeletal muscle and a pro-inflammatory effect in adipose tissue in rats. Eur J Appl Physiol 106:697–704

    PubMed  Article  CAS  Google Scholar 

  • Santos RV, Caperuto EC, Costa Rosa LF (2007a) Effects of acute exhaustive physical exercise upon glutamine metabolism of lymphocytes from trained rats. Life Sci 80:573–578

    PubMed  Article  CAS  Google Scholar 

  • Santos RV, Tufik S, De Mello MT (2007b) Exercise, sleep and cytokines: is there a relation? Sleep Med Rev 11:231–239

    PubMed  Article  CAS  Google Scholar 

  • Santos RV, Caperuto EC, de Mello MT, Costa Rosa LF (2009) Effect of exercise on glutamine metabolism in macrophages of trained rats. Eur J Appl Physiol 107:309–315

    PubMed  Article  CAS  Google Scholar 

  • Singleton KD, Wischmeyer PE (2008) Glutamine attenuates inflammation and NF-kappaB activation via Cullin-1 deneddylation. Biochem Biophys Res Commun 373:445–449

    PubMed  Article  CAS  Google Scholar 

  • Soliman S, Aronson WJ, Barnard RJ (2009) analyzing serum-stimulated prostate cancer cell lines after low-fat, high-fiber diet and exercise intervention. Evid Based Complement Alternat Med 6:1–7

    Google Scholar 

  • Strohacker K, McFarlin BK (2010) Influence of obesity, physical inactivity, and weight cycling on chronic inflammation. Front Biosci (Elite Ed) 1:98–104

    Article  Google Scholar 

  • Turnbull AV, Rivier C (1995) Regulation of the HPA axis by cytokines. Brain Behav Immun 9:253–275

    PubMed  Article  CAS  Google Scholar 

  • Ullman D (2009) A review of a historical summit on integrative medicine. Evid Based Complement Alternat Med 7:1–4

    Google Scholar 

  • Warburton DE, Nicol CW, Bredin SS (2006) Health benefits of physical activity: the evidence. CMAJ 174:801–809

    Google Scholar 

  • Warburton DE, Taylor A, Bredin SS, Esch BT, Scott JM, Haykowsky MJ (2007) Central haemodynamics and peripheral muscle function during exercise in patients with chronic heart failure. Appl Physiol Nutr Metab 32:318–331

    PubMed  Article  Google Scholar 

  • Willison KD, Williams P, Andrews GJ (2007) Enhancing chronic disease management: a review of key issues and strategies. Complement Ther Clin Pract 13:232–239

    Google Scholar 

  • Woods JA, Vieira VJ, Keylock KT (2006) Exercise, inflammation, and innate immunity. Neurol Clin 24:585–599

    PubMed  Article  Google Scholar 

  • Zera T, Ufnal M, Szczepanska-Sadowska EJ (2008) Central TNF-alpha elevates blood pressure and sensitizes to central pressor action of angiotensin II in the infarcted rats. Physiol Pharmacol 59:117–121

    Google Scholar 

Download references

Acknowledgments

There are no conflicts of interest, personal compensation, or personal financial investment. This study was supported by FAPESP # 2007/00073-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo Vagner T. Santos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rosa Neto, J.C., Lira, F.S., de Mello, M.T. et al. Importance of exercise immunology in health promotion. Amino Acids 41, 1165–1172 (2011). https://doi.org/10.1007/s00726-010-0786-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0786-x

Keywords

  • Acute physical exercise
  • Chronic physical exercise
  • Moderate training
  • Glutamine
  • Inflammation
  • Immunosuppression