Aleshin A, Ananthakrishnan R, Li Q, Rosario R, Lu Y, Qu W, Song F, Bakr S, Szabolcs M, D’Agati V, Liu R, Homma S, Schmidt AM, Yan SF, Ramasamy R (2008) RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model. Am J Physiol Heart Circ Physiol 294:H1823–H1832
PubMed
Article
CAS
Google Scholar
Anderson MM, Requena JR, Crowley JR, Thorpe SR, Heinecke JW (1999) The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation endproducts at sites of inflammation. J Clin Invest 104:103–113
PubMed
Article
CAS
Google Scholar
Bakris GL, Bank AJ, Kass DA, Neutel JM, Preston RA, Oparil S (2004) Advanced glycation endproduct cross link breakers. A novel approach to cardiovascular pathologies related to the aging process. Am J Hypertens 17:23S–30S
PubMed
Article
CAS
Google Scholar
Bu DX, Rai V, Shen X, Rosario R, Lu Y, D’Agati V, Yan SF, Friedman RA, Nuglozeh E, Schmidt AM (2010) Activation of the ROCK1 branch of the transforming growth factor beta pathway contributes to RAGE-dependent acceleration of atherosclerosis in diabetic apoE null mice. Circ Res 106:1040–1051
PubMed
Article
CAS
Google Scholar
Bucciarelli LG, Wendt T, Qu W, Lu Y, Lalla E, Rong LL, Goova MT, Moser B, Kislinger T, Lee DC, Kashyap Y, Stern DM, Schmidt AM (2002) RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E null mice. Circulation 106:2827–2835
PubMed
Article
CAS
Google Scholar
Bucciarelli LG, Kaneko M, Ananthakrishnan R, Harja E, Lee LK, Hwang YC, Lerner S, Bakr S, Li Q, Lu Y, Song F, Qu W, Gomez T, Zou YS, Yan SF, Schmidt AM, Ramasamy R (2006) Receptor for advanced glycation endproducts: key modulator of myocardial ischemic injury. Circ 113:1226–1234
Article
CAS
Google Scholar
Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ, Farb A, Virmani R (2004) Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol 24:1266–1271
PubMed
Article
CAS
Google Scholar
Chang JS, Wendt T, Qu W, Kong L, Zou YS, Schmidt AM, Yan SF (2008) Oxygen deprivation triggers upregulation of early growth response-1 by the receptor for advanced glycation end products. Circ Res 102:905–913
PubMed
Article
CAS
Google Scholar
Dan Q, Wong R, Chung SK, Chung SS, Lam KS (2004) Interaction between the polyol pathway and non-enzymatic glycation on aortic smooth muscle cell migration and monocyte adhesion. Life Sci 76:445–459
PubMed
Article
CAS
Google Scholar
Dattilo BM, Fritz G, Leclerc E, Kooi CW, Heizmann CW, Chazin W (2007) The extracellular region of the receptor for advanced glycation endproducts is composed of two independent structural units. Biochemistry 46:6957–6970
PubMed
Article
CAS
Google Scholar
Demaine AG (2003) Polymorphisms of the aldose reductase gene and susceptibility to diabetic microvascular complications. Curr Med Chem 10:1389–1398
PubMed
Article
CAS
Google Scholar
DeVriese AS, Flyvbjerg A, Mortier S, Tilton RG, Lameire NJ (2003) Inhibition of the interaction of AGE–RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane. J Am Soc Nephrol 14:2109–2118
Article
CAS
Google Scholar
Falcone C, Emanuele E, D’Angelo A (2005) Plasma levels of soluble receptor for advanced glycation endproducts and coronary artery disease in nondiabetic men. Arterioscler Thromb Vasc Biol 25:1032–1037
PubMed
Article
CAS
Google Scholar
Flyvbjerg A, Denner L, Schrijvers BF, Tilton RG, Mogensen TH, Paludan SR, Rasch R (2004) Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice. Diabetes 53:166–172
PubMed
Article
CAS
Google Scholar
Forbes JM, Thorpe SR, Thallas-Bonke V, Pete J, Thomas MC, Deemer ER, Bassal S, El-Osta A, Long DM, Panagiotopoulos S, Jerums G, Osicka TM, Cooper ME (2005) Modulation of soluble receptor for advanced glycation endproducts by angiotensin-converting enzyme 1 inhibition in diabetic nephropathy. J Am Soc Nephrol 16:2363–2372
PubMed
Article
CAS
Google Scholar
Friedlander MA, Witko-Sarsat V, Nguyen AT, Wu YC, Labrunte M, Verger C, Jungers P, Descamps-Latscha B (1996) The advanced glycation endproduct pentosidine and monocyte activation in uremia. Clin Nephrol 45:379–382
PubMed
CAS
Google Scholar
Gale CP, Grant PJ (2004) The characterization and functional analysis of the human glyoxalase 1 gene using methods of bioinformatics. Gene 340:251–260
PubMed
Article
CAS
Google Scholar
Genuth S, Sun W, Cleary P, Sell DR, Dahms W, Malone J, Sivitz W, Monnier VM (2005) DCCT skin collagen ancillary study group. Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications of participants with type 1 diabetes. Diabetes 54:3103–3111
PubMed
Article
CAS
Google Scholar
Ghanem AA, Elewa A, Arafa LF (2010) Pentosidine and N-carboxymethyl-lysine: biomarkers for type 2 diabetic retinopathy. Eur J Opthalmol (in press)
Guo ZJ, Niu HX, Hou FF, Zhang L, Fu N, Nagai R, Lu X, Chen BH, Shan YX, Tian JW, Nagaraj RH, Xie D, Zhang X (2008) Advanced oxidation protein products activate vascular endothelial cells via a RAGE-mediated signaling pathway. Antioxid Redox Signal 10:1699–1712
PubMed
Article
CAS
Google Scholar
Halushka MK, Selvin E, Lu J, Macgregor AM, Cornish TC (2009) Use of human tissue microarrays fro measurement of advanced glycation endproducts. J Histochem Cytochem 57:559–566
PubMed
Article
CAS
Google Scholar
Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, Kalea AZ, Lu Y, Rosario R, Oruganti S, Nikolla Z, Belov D, Lalla E, Ramasamy R, Yan SF, Schmidt AM (2008) Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE−/− mice. J Clin Invest 118:183–194
PubMed
Article
CAS
Google Scholar
He CJ, Koschinsky T, Buenting C, Vlassara H (2001) Presence of diabetic complications in type 1 diabetic patients correlates with low expression of mononuclear cell AGE receptor-1 and elevated serum AGE. Mol Med 7:159–168
PubMed
CAS
Google Scholar
Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, Nagashima M, Lundh ER, Vijay S, Nitecki D (1995) The receptor for advanced glycation endproducts (RAGE) is a cellular binding site for amphoterin mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 270:25752–25761
PubMed
Article
CAS
Google Scholar
Hudson BI, Stickland MH, Grant PJ (1998) Identification of polymorphisms in the receptor for advanced glycation endproducts (RAGE) gene: prevalence in type 2 diabetes and ethnic groups. Diabetes 47:1155–1157
PubMed
Article
CAS
Google Scholar
Hudson BI, Kalea AZ, Del Mar Arriero M, Harja E, Boulanger E, D’Agati V, Schmidt AM (2008) Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 283:34457–34468
Inagi R, Yamamoto Y, Nangaku M, Usuda N, Okamato H, Kurokawa K, de Strihou C, Yamamoto H, Miyata T (2006) A severe diabetic nephropathy model with early development of nodule-like lesions induced by megsin overexpression in RAGE/iNOS transgenic mice. Diabetes 55:356–366
PubMed
Article
CAS
Google Scholar
Ishihara K, Tsutsumi K, Kawane S, Nakajima M, Kasaoka T (2003) The receptor for advanced glycation endproducts (RAGE) directly binds to ERK by a D-domain like docking site. FEBS Lett 550:107–113
PubMed
Article
CAS
Google Scholar
Jensen LJ, Denner L, Schrijvers BF, Tilton RG, Rasch R, Flyvbjerg A (2006) Renal effects of a neutralizing RAGE antibody in long-term streptozotocin-diabetic mice. J Endocrinol 188:493–501
PubMed
Article
CAS
Google Scholar
Katakami N, Matsuhisa M, Kaneto H, Yamasaki Y (2006) Serum endogenous secretory RAGE levels are inversely associated with glycosylated hemoglobin in type 2 diabetic subjects. Diabetes Care 29:469
PubMed
Article
Google Scholar
Katakami N, Matsuhisa M, Kaneto H, Yamasaki Y (2007) Serum endogenous secretory RAGE levels are inversely associated with carotid IMT in type 2 diabetic subjects. Atherosclerosis 190:22–23
PubMed
Article
CAS
Google Scholar
Kato S, Itoh K, Ochiai M, Iwai A, Park Y, Hata S, Takeuchi K, Ito M, Imaki J, Miura S, Yakabi K, Kobayashi M (2008) Increased pentosidine, an advanced glycation endproduct, in urine and tissue reflects disease activity in inflammatory bowel diseases. J Gastroenterol Hepatol 23(Suppl 2):S140–S145
Google Scholar
Kimura Y, Hyogo H, Yamagishi S, Takeuchi M, Ishitobi T, Nabeshima Y, Arihiro K, Chayama K (2010) Atorvastatin decreases serum levels of advanced glycation endproducts (AGEs) in nonalcoholic steatohepatitis (NASH) patients with dyslipidemia: clinical usefulness of AGEs as a biomarker for the attenuation of NASH. J Gastroenterol 45:750–757
Google Scholar
Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H (1997) Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci (USA) 94:6474–6479
Article
CAS
Google Scholar
Koyama H, Shoji T, Yokoyama H, Motoyama K, Mori K, Fukumoto S, Emoto M, Shoji T, Tamel H, Matsuki H, Sakurai S, Yamamoto Y, Yonekura H, Watanabe T, Yamamoto H, Nishizawa Y (2005) Plasma level of endogenous secretory RAGE is associated with components of the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 25:2587–2593
PubMed
Article
CAS
Google Scholar
Koyama Y, Takeishi Y, Arimoto T, Niizeki T, Shishido T, Takahashi H, Nozaki N, Hirono O, Tsunoda Y, Nitobe J, Watanabe T, Kubota I (2007) High serum levels of pentosidine, an advanced glycation endproducts, is a risk factor for patients with heart failure. J Card Fail 13:199–206
PubMed
Article
CAS
Google Scholar
Koyama Y, Takeishi Y, Niizeki T, Suzuki S, Kitahara T, Sasaki T, Kubota I (2008) Soluble receptor for advanced glycation endproducts (RAGE) is a prognostic factor for heart failure. J Card Fail 14:133–139
PubMed
Article
CAS
Google Scholar
Kumagai T, Nangaku M, Kojima I, Nagai R, Ingelfinger JR, Miyata T, Fujita T, Inagi R (2009) Glyoxalase 1 overexpression ameliorates renal ischemia-reperfusion injury in rats. Am J Physiol Renal Physiol 296:F912–F921
PubMed
Article
CAS
Google Scholar
Leclerc E, Fritz G, Veter SW, Heizmann CW (2009) Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta 1793:993–1007
PubMed
Article
CAS
Google Scholar
Lu C, He JC, Cai W, Liu H, Zhu L, Vlassara H (2004) Advanced glycation endproduct (AGE) receptor is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc Natl Acad Sci (USA) 101:11767–11772
Article
CAS
Google Scholar
Mahajan N, Malik N, Bahl A, Dhawan V (2009) Receptor for advanced glycation end products (RAGE) and its inflammatory ligand EN-RAGE in non-diabetic subjects with pre-mature coronary artery disease. Atherosclerosis 207:597–602
PubMed
Article
CAS
Google Scholar
McCormick Hallam K, Li Q, Ananthakrishnan R, Kalea A, Zou YS, Vedantham S, Schmidt AM, Yan SF, Ramasamy R (2010) Aldose reductase and AGE–RAGE pathways: central roles in the pathogenesis of vascular dysfunction in aging rats. Aging Cell (in press)
Monnier VM (2003) Intervention against the Maillard reaction in vivo. Arch Biochem Biophys 419:1–15
PubMed
Article
CAS
Google Scholar
Monnier VM, Bautista O, Kenny D, Sell DR, Fogarty J, Dahms W, Cleary PA, Lachin J, Genuth S (1999) Skin collagen, glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT skin collagen ancillary study group. Diabetes control and complications trial. Diabetes 48:870–880
PubMed
Article
CAS
Google Scholar
Myint KM, Yamamoto Y, Doi T, Kato I, Harashima A, Yonekura H, Watanabe T, Shinohara H, Takeuchi M, Tsuneyama K, Hashimoto N, Asano M, Takasawa S, Okamoto H, Yamamoto H (2006) RAGE control of diabetic nephropathy in a mouse model: effects of RAGE gene disruption and administration of low molecular weight heparin. Diabetes 55:2510–2522
PubMed
Article
CAS
Google Scholar
Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation endproducts of proteins. J Biol Chem 267:4998–5004
Google Scholar
Nienhuis HL, De Leeuw K, Bijzet J, Smit A, Schalkwijk CG, Graaff R, Kallenberg CG, Bijl M (2008) Skin autofluorescence is increased in systemic lupus erythematosus but is not reflected by elevated levels of advanced glycation endproducts. Rheumatology 47:1554–1558
PubMed
Article
CAS
Google Scholar
Ostendorp T, Leclerc E, Galichet A, Koch M, Demling N, Weigle B, Heizmann CW, Kroneck PM, Fritz G (2007) Structural and functional insights into RAGE activation by multimeric S100B. EMBO J 26:3868–3878
PubMed
Article
CAS
Google Scholar
Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS, Stern D, Schmidt AM (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4:1025–1031
PubMed
Article
CAS
Google Scholar
Raucci A, Cugusi S, Antonelli A, Barabino SM, Monti L, Bierhaus A, Reiss K, Saftig P, Bianchi ME (2008) A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane bound from by the sheddase a distintegrin and metalloprotease 10 (ADAM10). FASEB J 22:3716–3727
PubMed
Article
CAS
Google Scholar
Reiniger N, Lau K, McCalla D, Eby B, Cheng B, Lu Y, Qu W, Quadri N, Ananthakrishnan R, Furmansky M, Rosario R, Song F, Rai V, Weinberg A, Friedman R, Ramasamy R, D’Agati V, Schmidt AM (2010) Deletion of the receptor for advanced glycation endproducts reduces glomerulosclerosis and preserves renal function in the diabetic OVE26 mouse. Diabetes 59:2043–2054
PubMed
Article
CAS
Google Scholar
Santilli F, Bucciarelli L, Noto D, Cefalu AB, Davi V, Ferrante E, Pettinella C, Averna MR, Ciabattoni G, Davi G (2007) Decreased plasma soluble RAGE in patients with hypercholesterolemia: effect of statins. Free Radic Biol Med 43:1255–1262
PubMed
Article
CAS
Google Scholar
Saran AM, DuBose TD Jr (2008) Cardiovascular disease in chronic kidney disease. Ther Adv Cardiovasc Dis 2:425–434
PubMed
Article
Google Scholar
Soro-Paavonen A, Watson AM, Li J, Paavonen K, Koitka A, Calkin AC, Barit D, Coughlan MT, Drew BG, Lancaster GI, Thomas M, Forbes JM, Nawroth PP, Bierhaus A, Cooper ME, Jandeleit-Dahm KA (2008) Receptor for advanced glycation endproducts (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 57:2461–2469
PubMed
Article
CAS
Google Scholar
Sturchler E, Galichet A, Weibel M, Leclerc E, Heizmann CW (2008) Site specific blockade of RAGE Vd prevents amyloid beta oligomer neurotoxicity. J Neurosci 28:5149–5158
PubMed
Article
CAS
Google Scholar
Sun L, Ishida T, Yasuda T, Kojima Y, Honjo T, Yamamoto Y, Yamamoto H, Ishibashi S, Hirata K, Hayashi Y (2009) RAGE mediates oxidized LDL-induced pro-inflammatory effects and atherosclerosis in non-diabetic LDL receptor deficient mice. Cardiovasc Res 82:371–381
PubMed
Article
CAS
Google Scholar
Tahara N, Yamagishi SI, Matsui T, Takeuchi M, Nitta Y, Kodama N, Mizoguchi M, Imaizumi T (2010) Serum levels of advanced glycation end products (AGEs) are independent correlates of insulin resistance in nondiabetic subjects. Cardiovasc Ther (In press)
Thornalley PJ (2003) Glyoxalase 1-structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348
PubMed
Article
CAS
Google Scholar
Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucusone in the glycation of proteins from glucose. Biochem J 344:109–116
PubMed
Article
CAS
Google Scholar
Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, Dawnay A (2003) Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375:581–592
Google Scholar
Van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B (2010) The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil 17:S3–S8
PubMed
Google Scholar
Wagner Z, Molnar M, Molnar GA, Tamasko M, Laczy B, Csiky B, Heidland A, Nagy J, Wittmann I (2006) Serum carboxymethyllysine predicts mortality in hemodialysis patients. Am J Kidney Dis 47:294–300
PubMed
Article
CAS
Google Scholar
Wautier JL, Zoukourian C, Chappey O, Wautier MP, Guillausseau PJ, Cao R, Hori O, Stern D, Schmidt AM (1996) Receptor mediated endothelial cell dysfunction in diabetic vasculopathy soluble receptor for advanced glycation endproducts blocks hyperpermeability in diabetic rats. J Clin Invest 97:238–243
PubMed
Article
CAS
Google Scholar
Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL (2001) Activation of NADPH oxidase by AGEs links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 280:E685–E694
PubMed
CAS
Google Scholar
Wendt T, Tanji N, Guo J, Kislinger TR, Qu W, Lu Y, Bucciarelli LG, Rong LL, Moser B, Markowitz GS, Stein G, Bierhaus A, Liliensiek B, Arnold B, Nawroth PP, Stern DM, D’Agati VD, Schmidt AM (2003) RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol 162:1123–1137
PubMed
Article
CAS
Google Scholar
Wendt T, Harja E, Bucciarelli L, Qu W, Lu Y, Rong LL, Jenkins DG, Stein G, Schmidt AM, Yan SF (2006) RAGE modulates vascular inflammation and atherosclerosis in a murine model of type 2 diabetes. Atherosclerosis 185:70–77
PubMed
Article
CAS
Google Scholar
Xie J, Burz DS, He W, Bronstein IB, Lednev I, Shekhtman A (2007) Hexameric calgranulin C (S100A12) binds to the receptor for advanced glycated end products (RAGE) using symmetric hydrophobic target-binding patches. J Biol Chem 282:4218–4231
PubMed
Article
CAS
Google Scholar
Xie J, Reverdatto S, Frolov A, Hoffmann R, Burz DS, Shekhtman A (2008) Structural basis for pattern recognition by the receptor for advanced glycation endproducts (RAGE). J Biol Chem 283:27255–27269
PubMed
Article
CAS
Google Scholar
Xu Y, Toure F, Qu W, Lin L, Song F, Shen X, Rosario R, Garcia J, Schmidt AM, Yan SF (2010) Advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling and up-regulation of Egr-1 in hypoxic macrophages. J Biol Chem 285:23233–23240
PubMed
Article
CAS
Google Scholar
Yan SF, Ramasamy R, Schmidt AM (2010) The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature. Circ Res 106:842–853
PubMed
Article
CAS
Google Scholar
Yonekura H, Yamamoto Y, Sakurai S, Petrova RG, Abedin MJ, Li H, Yasui K, Takeuchi M, Makita Z, Takasawa S, Okamoto H, Watanabe T, Yamamoto H (2003) Novel splice variants of the receptor for advanced glycation endproducts expressed in human vascular endothelial cells and pericytes and their putative roles in diabetes induced vascular injury. Biochem J 370:1097–1109
PubMed
Article
CAS
Google Scholar
Zheng S, Noonan WT, Metreveli NS, Coventry S, Kralik PM, Carlson EC, Epstein PN (2004) Development of late-stage diabetic nephropathy in OVE26 diabetic mice. Diabetes 53:3248–3257
PubMed
Article
CAS
Google Scholar
Zieman SJ, Kass DA (2004) Advanced glycation endproduct crosslinking in the cardiovascular system: potential therapeutic target for cardiovascular disease. Drugs 64:459–470
PubMed
Article
CAS
Google Scholar