Skip to main content

Advanced glycation endproducts: from precursors to RAGE: round and round we go

Abstract

The formation of advanced glycation endproducts (AGEs) occurs in diverse settings such as diabetes, aging, renal failure, inflammation and hypoxia. The chief cellular receptor for AGEs, RAGE, transduces the effects of AGEs via signal transduction, at least in part via processes requiring the RAGE cytoplasmic domain binding partner, diaphanous-1 or mDia1. Data suggest that RAGE perpetuates the inflammatory signals initiated by AGEs via multiple mechanisms. AGE–RAGE interaction stimulates generation of reactive oxygen species and inflammation—mechanisms which enhance AGE formation. Further, recent data in type 1 diabetic kidney reveal that deletion of RAGE prevents methylglyoxal accumulation, at least in part via RAGE-dependent regulation of glyoxalase-1, a major enzyme involved in methylglyoxal detoxification. Taken together, these considerations place RAGE in the center of biochemical and molecular stresses that characterize the complications of diabetes and chronic disease. Stopping RAGE-dependent signaling may hold the key to interrupting cycles of cellular perturbation and tissue damage in these disorders.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Aleshin A, Ananthakrishnan R, Li Q, Rosario R, Lu Y, Qu W, Song F, Bakr S, Szabolcs M, D’Agati V, Liu R, Homma S, Schmidt AM, Yan SF, Ramasamy R (2008) RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model. Am J Physiol Heart Circ Physiol 294:H1823–H1832

    PubMed  Article  CAS  Google Scholar 

  • Anderson MM, Requena JR, Crowley JR, Thorpe SR, Heinecke JW (1999) The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation endproducts at sites of inflammation. J Clin Invest 104:103–113

    PubMed  Article  CAS  Google Scholar 

  • Bakris GL, Bank AJ, Kass DA, Neutel JM, Preston RA, Oparil S (2004) Advanced glycation endproduct cross link breakers. A novel approach to cardiovascular pathologies related to the aging process. Am J Hypertens 17:23S–30S

    PubMed  Article  CAS  Google Scholar 

  • Bu DX, Rai V, Shen X, Rosario R, Lu Y, D’Agati V, Yan SF, Friedman RA, Nuglozeh E, Schmidt AM (2010) Activation of the ROCK1 branch of the transforming growth factor beta pathway contributes to RAGE-dependent acceleration of atherosclerosis in diabetic apoE null mice. Circ Res 106:1040–1051

    PubMed  Article  CAS  Google Scholar 

  • Bucciarelli LG, Wendt T, Qu W, Lu Y, Lalla E, Rong LL, Goova MT, Moser B, Kislinger T, Lee DC, Kashyap Y, Stern DM, Schmidt AM (2002) RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E null mice. Circulation 106:2827–2835

    PubMed  Article  CAS  Google Scholar 

  • Bucciarelli LG, Kaneko M, Ananthakrishnan R, Harja E, Lee LK, Hwang YC, Lerner S, Bakr S, Li Q, Lu Y, Song F, Qu W, Gomez T, Zou YS, Yan SF, Schmidt AM, Ramasamy R (2006) Receptor for advanced glycation endproducts: key modulator of myocardial ischemic injury. Circ 113:1226–1234

    Article  CAS  Google Scholar 

  • Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ, Farb A, Virmani R (2004) Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol 24:1266–1271

    PubMed  Article  CAS  Google Scholar 

  • Chang JS, Wendt T, Qu W, Kong L, Zou YS, Schmidt AM, Yan SF (2008) Oxygen deprivation triggers upregulation of early growth response-1 by the receptor for advanced glycation end products. Circ Res 102:905–913

    PubMed  Article  CAS  Google Scholar 

  • Dan Q, Wong R, Chung SK, Chung SS, Lam KS (2004) Interaction between the polyol pathway and non-enzymatic glycation on aortic smooth muscle cell migration and monocyte adhesion. Life Sci 76:445–459

    PubMed  Article  CAS  Google Scholar 

  • Dattilo BM, Fritz G, Leclerc E, Kooi CW, Heizmann CW, Chazin W (2007) The extracellular region of the receptor for advanced glycation endproducts is composed of two independent structural units. Biochemistry 46:6957–6970

    PubMed  Article  CAS  Google Scholar 

  • Demaine AG (2003) Polymorphisms of the aldose reductase gene and susceptibility to diabetic microvascular complications. Curr Med Chem 10:1389–1398

    PubMed  Article  CAS  Google Scholar 

  • DeVriese AS, Flyvbjerg A, Mortier S, Tilton RG, Lameire NJ (2003) Inhibition of the interaction of AGE–RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane. J Am Soc Nephrol 14:2109–2118

    Article  CAS  Google Scholar 

  • Falcone C, Emanuele E, D’Angelo A (2005) Plasma levels of soluble receptor for advanced glycation endproducts and coronary artery disease in nondiabetic men. Arterioscler Thromb Vasc Biol 25:1032–1037

    PubMed  Article  CAS  Google Scholar 

  • Flyvbjerg A, Denner L, Schrijvers BF, Tilton RG, Mogensen TH, Paludan SR, Rasch R (2004) Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice. Diabetes 53:166–172

    PubMed  Article  CAS  Google Scholar 

  • Forbes JM, Thorpe SR, Thallas-Bonke V, Pete J, Thomas MC, Deemer ER, Bassal S, El-Osta A, Long DM, Panagiotopoulos S, Jerums G, Osicka TM, Cooper ME (2005) Modulation of soluble receptor for advanced glycation endproducts by angiotensin-converting enzyme 1 inhibition in diabetic nephropathy. J Am Soc Nephrol 16:2363–2372

    PubMed  Article  CAS  Google Scholar 

  • Friedlander MA, Witko-Sarsat V, Nguyen AT, Wu YC, Labrunte M, Verger C, Jungers P, Descamps-Latscha B (1996) The advanced glycation endproduct pentosidine and monocyte activation in uremia. Clin Nephrol 45:379–382

    PubMed  CAS  Google Scholar 

  • Gale CP, Grant PJ (2004) The characterization and functional analysis of the human glyoxalase 1 gene using methods of bioinformatics. Gene 340:251–260

    PubMed  Article  CAS  Google Scholar 

  • Genuth S, Sun W, Cleary P, Sell DR, Dahms W, Malone J, Sivitz W, Monnier VM (2005) DCCT skin collagen ancillary study group. Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications of participants with type 1 diabetes. Diabetes 54:3103–3111

    PubMed  Article  CAS  Google Scholar 

  • Ghanem AA, Elewa A, Arafa LF (2010) Pentosidine and N-carboxymethyl-lysine: biomarkers for type 2 diabetic retinopathy. Eur J Opthalmol (in press)

  • Guo ZJ, Niu HX, Hou FF, Zhang L, Fu N, Nagai R, Lu X, Chen BH, Shan YX, Tian JW, Nagaraj RH, Xie D, Zhang X (2008) Advanced oxidation protein products activate vascular endothelial cells via a RAGE-mediated signaling pathway. Antioxid Redox Signal 10:1699–1712

    PubMed  Article  CAS  Google Scholar 

  • Halushka MK, Selvin E, Lu J, Macgregor AM, Cornish TC (2009) Use of human tissue microarrays fro measurement of advanced glycation endproducts. J Histochem Cytochem 57:559–566

    PubMed  Article  CAS  Google Scholar 

  • Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, Kalea AZ, Lu Y, Rosario R, Oruganti S, Nikolla Z, Belov D, Lalla E, Ramasamy R, Yan SF, Schmidt AM (2008) Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE−/− mice. J Clin Invest 118:183–194

    PubMed  Article  CAS  Google Scholar 

  • He CJ, Koschinsky T, Buenting C, Vlassara H (2001) Presence of diabetic complications in type 1 diabetic patients correlates with low expression of mononuclear cell AGE receptor-1 and elevated serum AGE. Mol Med 7:159–168

    PubMed  CAS  Google Scholar 

  • Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, Nagashima M, Lundh ER, Vijay S, Nitecki D (1995) The receptor for advanced glycation endproducts (RAGE) is a cellular binding site for amphoterin mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 270:25752–25761

    PubMed  Article  CAS  Google Scholar 

  • Hudson BI, Stickland MH, Grant PJ (1998) Identification of polymorphisms in the receptor for advanced glycation endproducts (RAGE) gene: prevalence in type 2 diabetes and ethnic groups. Diabetes 47:1155–1157

    PubMed  Article  CAS  Google Scholar 

  • Hudson BI, Kalea AZ, Del Mar Arriero M, Harja E, Boulanger E, D’Agati V, Schmidt AM (2008) Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 283:34457–34468

  • Inagi R, Yamamoto Y, Nangaku M, Usuda N, Okamato H, Kurokawa K, de Strihou C, Yamamoto H, Miyata T (2006) A severe diabetic nephropathy model with early development of nodule-like lesions induced by megsin overexpression in RAGE/iNOS transgenic mice. Diabetes 55:356–366

    PubMed  Article  CAS  Google Scholar 

  • Ishihara K, Tsutsumi K, Kawane S, Nakajima M, Kasaoka T (2003) The receptor for advanced glycation endproducts (RAGE) directly binds to ERK by a D-domain like docking site. FEBS Lett 550:107–113

    PubMed  Article  CAS  Google Scholar 

  • Jensen LJ, Denner L, Schrijvers BF, Tilton RG, Rasch R, Flyvbjerg A (2006) Renal effects of a neutralizing RAGE antibody in long-term streptozotocin-diabetic mice. J Endocrinol 188:493–501

    PubMed  Article  CAS  Google Scholar 

  • Katakami N, Matsuhisa M, Kaneto H, Yamasaki Y (2006) Serum endogenous secretory RAGE levels are inversely associated with glycosylated hemoglobin in type 2 diabetic subjects. Diabetes Care 29:469

    PubMed  Article  Google Scholar 

  • Katakami N, Matsuhisa M, Kaneto H, Yamasaki Y (2007) Serum endogenous secretory RAGE levels are inversely associated with carotid IMT in type 2 diabetic subjects. Atherosclerosis 190:22–23

    PubMed  Article  CAS  Google Scholar 

  • Kato S, Itoh K, Ochiai M, Iwai A, Park Y, Hata S, Takeuchi K, Ito M, Imaki J, Miura S, Yakabi K, Kobayashi M (2008) Increased pentosidine, an advanced glycation endproduct, in urine and tissue reflects disease activity in inflammatory bowel diseases. J Gastroenterol Hepatol 23(Suppl 2):S140–S145

    Google Scholar 

  • Kimura Y, Hyogo H, Yamagishi S, Takeuchi M, Ishitobi T, Nabeshima Y, Arihiro K, Chayama K (2010) Atorvastatin decreases serum levels of advanced glycation endproducts (AGEs) in nonalcoholic steatohepatitis (NASH) patients with dyslipidemia: clinical usefulness of AGEs as a biomarker for the attenuation of NASH. J Gastroenterol 45:750–757

    Google Scholar 

  • Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H (1997) Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci (USA) 94:6474–6479

    Article  CAS  Google Scholar 

  • Koyama H, Shoji T, Yokoyama H, Motoyama K, Mori K, Fukumoto S, Emoto M, Shoji T, Tamel H, Matsuki H, Sakurai S, Yamamoto Y, Yonekura H, Watanabe T, Yamamoto H, Nishizawa Y (2005) Plasma level of endogenous secretory RAGE is associated with components of the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 25:2587–2593

    PubMed  Article  CAS  Google Scholar 

  • Koyama Y, Takeishi Y, Arimoto T, Niizeki T, Shishido T, Takahashi H, Nozaki N, Hirono O, Tsunoda Y, Nitobe J, Watanabe T, Kubota I (2007) High serum levels of pentosidine, an advanced glycation endproducts, is a risk factor for patients with heart failure. J Card Fail 13:199–206

    PubMed  Article  CAS  Google Scholar 

  • Koyama Y, Takeishi Y, Niizeki T, Suzuki S, Kitahara T, Sasaki T, Kubota I (2008) Soluble receptor for advanced glycation endproducts (RAGE) is a prognostic factor for heart failure. J Card Fail 14:133–139

    PubMed  Article  CAS  Google Scholar 

  • Kumagai T, Nangaku M, Kojima I, Nagai R, Ingelfinger JR, Miyata T, Fujita T, Inagi R (2009) Glyoxalase 1 overexpression ameliorates renal ischemia-reperfusion injury in rats. Am J Physiol Renal Physiol 296:F912–F921

    PubMed  Article  CAS  Google Scholar 

  • Leclerc E, Fritz G, Veter SW, Heizmann CW (2009) Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta 1793:993–1007

    PubMed  Article  CAS  Google Scholar 

  • Lu C, He JC, Cai W, Liu H, Zhu L, Vlassara H (2004) Advanced glycation endproduct (AGE) receptor is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc Natl Acad Sci (USA) 101:11767–11772

    Article  CAS  Google Scholar 

  • Mahajan N, Malik N, Bahl A, Dhawan V (2009) Receptor for advanced glycation end products (RAGE) and its inflammatory ligand EN-RAGE in non-diabetic subjects with pre-mature coronary artery disease. Atherosclerosis 207:597–602

    PubMed  Article  CAS  Google Scholar 

  • McCormick Hallam K, Li Q, Ananthakrishnan R, Kalea A, Zou YS, Vedantham S, Schmidt AM, Yan SF, Ramasamy R (2010) Aldose reductase and AGE–RAGE pathways: central roles in the pathogenesis of vascular dysfunction in aging rats. Aging Cell (in press)

  • Monnier VM (2003) Intervention against the Maillard reaction in vivo. Arch Biochem Biophys 419:1–15

    PubMed  Article  CAS  Google Scholar 

  • Monnier VM, Bautista O, Kenny D, Sell DR, Fogarty J, Dahms W, Cleary PA, Lachin J, Genuth S (1999) Skin collagen, glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT skin collagen ancillary study group. Diabetes control and complications trial. Diabetes 48:870–880

    PubMed  Article  CAS  Google Scholar 

  • Myint KM, Yamamoto Y, Doi T, Kato I, Harashima A, Yonekura H, Watanabe T, Shinohara H, Takeuchi M, Tsuneyama K, Hashimoto N, Asano M, Takasawa S, Okamoto H, Yamamoto H (2006) RAGE control of diabetic nephropathy in a mouse model: effects of RAGE gene disruption and administration of low molecular weight heparin. Diabetes 55:2510–2522

    PubMed  Article  CAS  Google Scholar 

  • Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation endproducts of proteins. J Biol Chem 267:4998–5004

    Google Scholar 

  • Nienhuis HL, De Leeuw K, Bijzet J, Smit A, Schalkwijk CG, Graaff R, Kallenberg CG, Bijl M (2008) Skin autofluorescence is increased in systemic lupus erythematosus but is not reflected by elevated levels of advanced glycation endproducts. Rheumatology 47:1554–1558

    PubMed  Article  CAS  Google Scholar 

  • Ostendorp T, Leclerc E, Galichet A, Koch M, Demling N, Weigle B, Heizmann CW, Kroneck PM, Fritz G (2007) Structural and functional insights into RAGE activation by multimeric S100B. EMBO J 26:3868–3878

    PubMed  Article  CAS  Google Scholar 

  • Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS, Stern D, Schmidt AM (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4:1025–1031

    PubMed  Article  CAS  Google Scholar 

  • Raucci A, Cugusi S, Antonelli A, Barabino SM, Monti L, Bierhaus A, Reiss K, Saftig P, Bianchi ME (2008) A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane bound from by the sheddase a distintegrin and metalloprotease 10 (ADAM10). FASEB J 22:3716–3727

    PubMed  Article  CAS  Google Scholar 

  • Reiniger N, Lau K, McCalla D, Eby B, Cheng B, Lu Y, Qu W, Quadri N, Ananthakrishnan R, Furmansky M, Rosario R, Song F, Rai V, Weinberg A, Friedman R, Ramasamy R, D’Agati V, Schmidt AM (2010) Deletion of the receptor for advanced glycation endproducts reduces glomerulosclerosis and preserves renal function in the diabetic OVE26 mouse. Diabetes 59:2043–2054

    PubMed  Article  CAS  Google Scholar 

  • Santilli F, Bucciarelli L, Noto D, Cefalu AB, Davi V, Ferrante E, Pettinella C, Averna MR, Ciabattoni G, Davi G (2007) Decreased plasma soluble RAGE in patients with hypercholesterolemia: effect of statins. Free Radic Biol Med 43:1255–1262

    PubMed  Article  CAS  Google Scholar 

  • Saran AM, DuBose TD Jr (2008) Cardiovascular disease in chronic kidney disease. Ther Adv Cardiovasc Dis 2:425–434

    PubMed  Article  Google Scholar 

  • Soro-Paavonen A, Watson AM, Li J, Paavonen K, Koitka A, Calkin AC, Barit D, Coughlan MT, Drew BG, Lancaster GI, Thomas M, Forbes JM, Nawroth PP, Bierhaus A, Cooper ME, Jandeleit-Dahm KA (2008) Receptor for advanced glycation endproducts (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 57:2461–2469

    PubMed  Article  CAS  Google Scholar 

  • Sturchler E, Galichet A, Weibel M, Leclerc E, Heizmann CW (2008) Site specific blockade of RAGE Vd prevents amyloid beta oligomer neurotoxicity. J Neurosci 28:5149–5158

    PubMed  Article  CAS  Google Scholar 

  • Sun L, Ishida T, Yasuda T, Kojima Y, Honjo T, Yamamoto Y, Yamamoto H, Ishibashi S, Hirata K, Hayashi Y (2009) RAGE mediates oxidized LDL-induced pro-inflammatory effects and atherosclerosis in non-diabetic LDL receptor deficient mice. Cardiovasc Res 82:371–381

    PubMed  Article  CAS  Google Scholar 

  • Tahara N, Yamagishi SI, Matsui T, Takeuchi M, Nitta Y, Kodama N, Mizoguchi M, Imaizumi T (2010) Serum levels of advanced glycation end products (AGEs) are independent correlates of insulin resistance in nondiabetic subjects. Cardiovasc Ther (In press)

  • Thornalley PJ (2003) Glyoxalase 1-structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348

    PubMed  Article  CAS  Google Scholar 

  • Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucusone in the glycation of proteins from glucose. Biochem J 344:109–116

    PubMed  Article  CAS  Google Scholar 

  • Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, Dawnay A (2003) Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375:581–592

    Google Scholar 

  • Van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B (2010) The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil 17:S3–S8

    PubMed  Google Scholar 

  • Wagner Z, Molnar M, Molnar GA, Tamasko M, Laczy B, Csiky B, Heidland A, Nagy J, Wittmann I (2006) Serum carboxymethyllysine predicts mortality in hemodialysis patients. Am J Kidney Dis 47:294–300

    PubMed  Article  CAS  Google Scholar 

  • Wautier JL, Zoukourian C, Chappey O, Wautier MP, Guillausseau PJ, Cao R, Hori O, Stern D, Schmidt AM (1996) Receptor mediated endothelial cell dysfunction in diabetic vasculopathy soluble receptor for advanced glycation endproducts blocks hyperpermeability in diabetic rats. J Clin Invest 97:238–243

    PubMed  Article  CAS  Google Scholar 

  • Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL (2001) Activation of NADPH oxidase by AGEs links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 280:E685–E694

    PubMed  CAS  Google Scholar 

  • Wendt T, Tanji N, Guo J, Kislinger TR, Qu W, Lu Y, Bucciarelli LG, Rong LL, Moser B, Markowitz GS, Stein G, Bierhaus A, Liliensiek B, Arnold B, Nawroth PP, Stern DM, D’Agati VD, Schmidt AM (2003) RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol 162:1123–1137

    PubMed  Article  CAS  Google Scholar 

  • Wendt T, Harja E, Bucciarelli L, Qu W, Lu Y, Rong LL, Jenkins DG, Stein G, Schmidt AM, Yan SF (2006) RAGE modulates vascular inflammation and atherosclerosis in a murine model of type 2 diabetes. Atherosclerosis 185:70–77

    PubMed  Article  CAS  Google Scholar 

  • Xie J, Burz DS, He W, Bronstein IB, Lednev I, Shekhtman A (2007) Hexameric calgranulin C (S100A12) binds to the receptor for advanced glycated end products (RAGE) using symmetric hydrophobic target-binding patches. J Biol Chem 282:4218–4231

    PubMed  Article  CAS  Google Scholar 

  • Xie J, Reverdatto S, Frolov A, Hoffmann R, Burz DS, Shekhtman A (2008) Structural basis for pattern recognition by the receptor for advanced glycation endproducts (RAGE). J Biol Chem 283:27255–27269

    PubMed  Article  CAS  Google Scholar 

  • Xu Y, Toure F, Qu W, Lin L, Song F, Shen X, Rosario R, Garcia J, Schmidt AM, Yan SF (2010) Advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling and up-regulation of Egr-1 in hypoxic macrophages. J Biol Chem 285:23233–23240

    PubMed  Article  CAS  Google Scholar 

  • Yan SF, Ramasamy R, Schmidt AM (2010) The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature. Circ Res 106:842–853

    PubMed  Article  CAS  Google Scholar 

  • Yonekura H, Yamamoto Y, Sakurai S, Petrova RG, Abedin MJ, Li H, Yasui K, Takeuchi M, Makita Z, Takasawa S, Okamoto H, Watanabe T, Yamamoto H (2003) Novel splice variants of the receptor for advanced glycation endproducts expressed in human vascular endothelial cells and pericytes and their putative roles in diabetes induced vascular injury. Biochem J 370:1097–1109

    PubMed  Article  CAS  Google Scholar 

  • Zheng S, Noonan WT, Metreveli NS, Coventry S, Kralik PM, Carlson EC, Epstein PN (2004) Development of late-stage diabetic nephropathy in OVE26 diabetic mice. Diabetes 53:3248–3257

    PubMed  Article  CAS  Google Scholar 

  • Zieman SJ, Kass DA (2004) Advanced glycation endproduct crosslinking in the cardiovascular system: potential therapeutic target for cardiovascular disease. Drugs 64:459–470

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the US Public Health Service and the Juvenile Diabetes Research Foundation. The authors are grateful for the assistance of Ms. Latoya Woods in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Marie Schmidt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramasamy, R., Yan, S.F. & Schmidt, A.M. Advanced glycation endproducts: from precursors to RAGE: round and round we go. Amino Acids 42, 1151–1161 (2012). https://doi.org/10.1007/s00726-010-0773-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0773-2

Keywords

  • Glycation
  • Oxidative stress
  • Receptor for advanced glycation endproduct
  • Diabetes
  • Atherosclerosis
  • Hypoxia