Skip to main content
Log in

Changes in brain protein expression are linked to magnesium restriction-induced depression-like behavior

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

There is evidence to suggest that low levels of magnesium (Mg) are associated with affective disorders, however, causality and central neurobiological mechanisms of this link are largely unproven. We have recently shown that mice fed a low Mg-containing diet (10% of daily requirement) display enhanced depression-like behavior sensitive to chronic antidepressant treatment. The aim of the present study was to utilize this model to gain insight into underlying mechanisms by quantifying amygdala/hypothalamus protein expression using gel-based proteomics and correlating changes in protein expression with changes in depression-like behavior. Mice fed Mg-restricted diet displayed reduced brain Mg tissue levels and altered expression of four proteins, N(G),N(G)-dimethylarginine dimethylaminohydrolase 1 (DDAH1), manganese-superoxide dismutase (MnSOD), glutamate dehydrogenase 1 (GDH1) and voltage-dependent anion channel 1. The observed alterations in protein expression may indicate increased nitric oxide production, increased anti-oxidant response to increased oxidative stress and potential alteration in energy metabolism. Aberrant expressions of DDAH1, MnSOD and GDH1 were normalized by chronic paroxetine treatment which also normalized the enhanced depression-like behavior, strengthening the link between the changes in these proteins and depression-like behavior. Collectively, these findings provide first evidence of low magnesium-induced alteration in brain protein levels and biochemical pathways, contributing to central dysregulation in affective disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altura BM, Gebrewold A, Zhang A, Altura BT, Gupta RK (1997) Short-term reduction in dietary intake of magnesium causes deficits in brain intracellular free Mg2+ and [H+]i but not high-energy phosphates as observed by in vivo 31P-NMR. Biochim Biophys Acta 1358:1–5

    Article  PubMed  CAS  Google Scholar 

  • Anand A, Shekhar A (2003) Brain imaging studies in mood and anxiety disorders: special emphasis on the amygdala. Ann N Y Acad Sci 985:370–388

    Article  PubMed  Google Scholar 

  • Astier C, Rock E, Lab C, Gueux E, Mazur A, Rayssiguier Y (1996) Functional alterations in sarcoplasmic reticulum membranes of magnesium-deficient rat skeletal muscle as consequences of free radical-mediated process. Free Radic Biol Med 20:667–674

    Article  PubMed  CAS  Google Scholar 

  • Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555

    Article  PubMed  CAS  Google Scholar 

  • Banki CM, Vojnik M, Papp Z et al (1985) Cerebrospinal fluid magnesium and calcium related to amine metabolites, diagnosis, and suicide attempts. Biol Psychiatry 20:163–171

    Google Scholar 

  • Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D (2006) Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 6:3414–3425

    Article  PubMed  CAS  Google Scholar 

  • Belin MF, Didier-Bazes M, Akaoka H, Hardin-Pouzet H, Bernard A, Giraudon P (1997) Changes in astrocytic glutamate catabolism enzymes following neuronal degeneration or viral infection. Glia 21:154–161

    Article  PubMed  CAS  Google Scholar 

  • Bourin M, Chue P, Guillon Y (2001) Paroxetine: a review. CNS Drug Rev 7:25–47

    Article  PubMed  CAS  Google Scholar 

  • Burgos M, Fradejas N, Calvo S, Kang SU, Tranque P, Lubec G (2010) A proteomic analysis of PKCepsilon targets in astrocytes: implications for astrogliosis. Amino Acids (in press)

  • Bussiere L, Mazur A, Gueux E, Nowacki W, Rayssiguier Y (1995) Triglyceride-rich lipoproteins from magnesium-deficient rats are more susceptible to oxidation by cells and promote proliferation of cultured vascular smooth muscle cells. Magnes Res 8:151–157

    PubMed  CAS  Google Scholar 

  • Carboni L, Piubelli C, Pozzato C, Astner H, Arban R, Righetti PG, Hamdan M, Domenici E (2006a) Proteomic analysis of rat hippocampus after repeated psychosocial stress. Neuroscience 137:1237–1246

    Article  PubMed  CAS  Google Scholar 

  • Carboni L, Vighini M, Piubelli C, Castelletti L, Milli A, Domenici E (2006b) Proteomic analysis of rat hippocampus and frontal cortex after chronic treatment with fluoxetine or putative novel antidepressants: CRF1 and NK1 receptor antagonists. Eur Neuropsychopharmacol 16:521–537

    Article  PubMed  CAS  Google Scholar 

  • Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ (2003) VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301:513–517

    Article  PubMed  CAS  Google Scholar 

  • Cowan JA (2002) Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals 15:225–235

    Article  PubMed  CAS  Google Scholar 

  • Crespi F (2010) The selective serotonin reuptake inhibitor fluoxetine reduces striatal in vivo levels of voltammetric nitric oxide (NO): a feature of its antidepressant activity? Neurosci Lett 470:95–99

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  PubMed  CAS  Google Scholar 

  • Drevets WC (2003) Neuroimaging abnormalities in the amygdala in mood disorders. Ann N Y Acad Sci 985:420–444

    Article  PubMed  Google Scholar 

  • Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606

    PubMed  CAS  Google Scholar 

  • Duman RS, Malberg J, Thome J (1999) Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 46:1181–1191

    Article  PubMed  CAS  Google Scholar 

  • Eby GA, Eby KL (2006) Rapid recovery from major depression using magnesium treatment. Med Hypotheses 67:362–370

    Article  PubMed  CAS  Google Scholar 

  • Elizalde N, Gil-Bea FJ, Ramirez MJ, Aisa B, Lasheras B, Del Rio J, Tordera RM (2008) Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: effect of antidepressant treatment. Psychopharmacology (Berl) 199:1–14

    Article  CAS  Google Scholar 

  • Ergun Y, Ergun UG (2007) Prevention of pro-depressant effect of L-arginine in the forced swim test by NG-nitro-L-arginine and [1H-[1, 2, 4]Oxadiazole[4, 3-a]quinoxalin-1-one]. Eur J Pharmacol 554:150–154

    Article  PubMed  Google Scholar 

  • Finkel MS, Laghrissi-Thode F, Pollock BG, Rong J (1996) Paroxetine is a novel nitric oxide synthase inhibitor. Psychopharmacol Bull 32:653–658

    PubMed  CAS  Google Scholar 

  • Freedman AM, Cassidy MM, Weglicki WB (1991) Magnesium-deficient myocardium demonstrates an increased susceptibility to an in vivo oxidative stress. Magnes Res 4:185–189

    PubMed  CAS  Google Scholar 

  • Freedman AM, Mak IT, Stafford RE, Dickens BF, Cassidy MM, Muesing RA, Weglicki WB (1992) Erythrocytes from magnesium-deficient hamsters display an enhanced susceptibility to oxidative stress. Am J Physiol 262:C1371–C1375

    PubMed  CAS  Google Scholar 

  • Frigerio F, Casimir M, Carobbio S, Maechler P (2008) Tissue specificity of mitochondrial glutamate pathways and the control of metabolic homeostasis. Biochim Biophys Acta 1777:965–972

    Article  PubMed  CAS  Google Scholar 

  • Galan P, Preziosi P, Durlach V, Valeix P, Ribas L, Bouzid D, Favier A, Hercberg S (1997) Dietary magnesium intake in a French adult population. Magnes Res 10:321–328

    PubMed  CAS  Google Scholar 

  • Gardier AM, David DJ, Jego G, Przybylski C, Jacquot C, Durier S, Gruwez B, Douvier E, Beauverie P, Poisson N, Hen R, Bourin M (2003) Effects of chronic paroxetine treatment on dialysate serotonin in 5-HT1B receptor knockout mice. J Neurochem 86:13–24

    Article  PubMed  CAS  Google Scholar 

  • Garfinkel L, Garfinkel D (1985) Magnesium regulation of the glycolytic pathway and the enzymes involved. Magnesium 4:60–72

    PubMed  CAS  Google Scholar 

  • German-Fattal M, Lecerf F, Sabbagh F, Maurois P, Durlach J, Bac P(2008) Neuroprotective gene profile in the brain of magnesium-deficient mice. Biomed Pharmacother 62:264–272

    Google Scholar 

  • Giulivi C, Boveris A, Cadenas E (1995) Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA. Arch Biochem Biophys 316:909–916

    Article  PubMed  CAS  Google Scholar 

  • Gueux E, Cubizolles C, Bussiere L, Mazur A, Rayssiguier Y (1993) Oxidative modification of triglyceride-rich lipoproteins in hypertriglyceridemic rats following magnesium deficiency. Lipids 28:573–575

    Article  PubMed  CAS  Google Scholar 

  • Hackbarth H, Kuppers N, Bohnet W (2000) Euthanasia of rats with carbon dioxide—animal welfare aspects. Lab Anim 34:91–96

    Article  PubMed  CAS  Google Scholar 

  • Haddad JJ (2005) N-methyl-D-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: a revolving neurochemical axis for therapeutic intervention? Prog Neurobiol 77:252–282

    PubMed  CAS  Google Scholar 

  • Harkin A, Connor TJ, Burns MP, Kelly JP (2004) Nitric oxide synthase inhibitors augment the effects of serotonin re-uptake inhibitors in the forced swimming test. Eur Neuropsychopharmacol 14:274–281

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Takei N, Mizuno Y, Kato K, Kohsaka S (1995) Neurotrophic and neuroprotective effects of neuron-specific enolase on cultured neurons from embryonic rat brain. Neurosci Res 21:191–198

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M (2009) Oxidative stress in developmental brain disorders. Neuropathology 29:1–8

    Article  PubMed  Google Scholar 

  • Husi H, Grant SG (2001) Proteomics of the nervous system. Trends Neurosci 24:259–266

    Article  PubMed  CAS  Google Scholar 

  • Inan SY, Yalcin I, Aksu F (2004) Dual effects of nitric oxide in the mouse forced swimming test: possible contribution of nitric oxide-mediated serotonin release and potassium channel modulation. Pharmacol Biochem Behav 77:457–464

    Article  PubMed  CAS  Google Scholar 

  • Iosifescu DV, Renshaw PE (2003) 31P-magnetic resonance spectroscopy and thyroid hormones in major depressive disorder: toward a bioenergetic mechanism in depression? Harv Rev Psychiatry 11:51–63

    Article  PubMed  Google Scholar 

  • Iosifescu DV, Bolo NR, Nierenberg AA, Jensen JE, Fava M, Renshaw PF (2008) Brain bioenergetics and response to triiodothyronine augmentation in major depressive disorder. Biol Psychiatry 63:1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Jacka FN, Overland S, Stewart R, Tell GS, Bjelland I, Mykletun A (2009) Association between magnesium intake and depression and anxiety in community-dwelling adults: the Hordaland Health Study. Aust N Z J Psychiatry 43:45–52

    Article  PubMed  Google Scholar 

  • Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF, Yolken RH (2000) Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry 5:142–149

    Article  PubMed  CAS  Google Scholar 

  • Kang SU, Fuchs K, Sieghart W, Pollak A, Csaszar E, Lubec G (2009) Gel-based mass spectrometric analysis of a strongly hydrophobic GABAA-receptor subunit containing four transmembrane domains. Nat Protoc 4:1093–1102

    Article  PubMed  CAS  Google Scholar 

  • Kantak KM (1988) Magnesium deficiency alters aggressive behavior and catecholamine function. Behav Neurosci 102:304–311

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18:687–697

    PubMed  CAS  Google Scholar 

  • Kolla N, Wei Z, Richardson JS, Li XM (2005) Amitriptyline and fluoxetine protect PC12 cells from cell death induced by hydrogen peroxide. J Psychiatry Neurosci 30:196–201

    PubMed  Google Scholar 

  • Kromer SA, Kessler MS, Milfay D, Birg IN, Bunck M, Czibere L, Panhuysen M, Putz B, Deussing JM, Holsboer F, Landgraf R, Turck CW (2005) Identification of glyoxalase-I as a protein marker in a mouse model of extremes in trait anxiety. J Neurosci 25:4375–4384

    Article  PubMed  Google Scholar 

  • Levine J, Stein D, Rapoport A, Kurtzman L (1999) High serum and cerebrospinal fluid Ca/Mg ratio in recently hospitalized acutely depressed patients. Neuropsychobiology 39:63–70

    Google Scholar 

  • Li XM, Chlan-Fourney J, Juorio AV, Bennett VL, Shrikhande S, Bowen RC (2000) Antidepressants upregulate messenger RNA levels of the neuroprotective enzyme superoxide dismutase (SOD1). J Psychiatry Neurosci 25:43–47

    PubMed  CAS  Google Scholar 

  • Libri V, Santarelli R, Nistico S, Azzena GB (1997) Inhibition of nitric oxide synthase prevents magnesium-free-induced epileptiform activity in guinea-pig piriform cortex neurones in vitro. Naunyn Schmiedebergs Arch Pharmacol 355:452–456

    Article  PubMed  CAS  Google Scholar 

  • MacAllister RJ, Parry H, Kimoto M, Ogawa T, Russell RJ, Hodson H, Whitley GS, Vallance P (1996) Regulation of nitric oxide synthesis by dimethylarginine dimethylaminohydrolase. Br J Pharmacol 119:1533–1540

    PubMed  CAS  Google Scholar 

  • Mak IT, Komarov AM, Wagner TL, Stafford RE, Dickens BF, Weglicki WB (1996) Enhanced NO production during Mg deficiency and its role in mediating red blood cell glutathione loss. Am J Physiol 271:C385–C390

    PubMed  CAS  Google Scholar 

  • Marangos PJ, Zis AP, Clark RL, Goodwin FK (1978) Neuronal, non-neuronal and hybrid forms of enolase in brain: structural, immunological and functional comparisons. Brain Res 150:117–133

    Article  PubMed  CAS  Google Scholar 

  • Marangos PJ, Schmechel DE, Parma AM, Goodwin FK (1980) Developmental profile of neuron-specific (NSE) and non-neuronal (NNE) enolase. Brain Res 190:185–193

    Article  PubMed  CAS  Google Scholar 

  • Michel TM, Thome J, Martin D, Nara K, Zwerina S, Tatschner T, Weijers HG, Koutsilieri E (2004) Cu, Zn- and Mn-superoxide dismutase levels in brains of patients with schizophrenic psychosis. J Neural Transm 111:1191–1201

    Article  PubMed  CAS  Google Scholar 

  • Michel TM, Frangou S, Thiemeyer D, Camara S, Jecel J, Nara K, Brunklaus A, Zoechling R, Riederer P (2007) Evidence for oxidative stress in the frontal cortex in patients with recurrent depressive disorder–a postmortem study. Psychiatry Res 151:145–150

    Article  PubMed  CAS  Google Scholar 

  • Mu J, Xie P, Yang ZS, Yang DL, Lv FJ, Luo TY, Li Y (2007) Neurogenesis and major depression: implications from proteomic analyses of hippocampal proteins in a rat depression model. Neurosci Lett 416:252–256

    Article  PubMed  CAS  Google Scholar 

  • Muigg P, Hoelzl U, Palfrader K, Neumann I, Wigger A, Landgraf R, Singewald N (2007) Altered brain activation pattern associated with drug-induced attenuation of enhanced depression-like behavior in rats bred for high anxiety. Biol Psychiatry 61:782–796

    Article  PubMed  CAS  Google Scholar 

  • Murck H (2002) Magnesium and affective disorders. Nutr Neurosci 5:375–389

    Article  PubMed  CAS  Google Scholar 

  • Muroyama A, Inaka M, Matsushima H, Sugino H, Marunaka Y, Mitsumoto Y (2009) Enhanced susceptibility to MPTP neurotoxicity in magnesium-deficient C57BL/6N mice. Neurosci Res 63:72–75

    Google Scholar 

  • Nestler EJ (1998) Antidepressant treatments in the 21st century. Biol Psychiatry 44:526–533

    Article  PubMed  CAS  Google Scholar 

  • Nielsen FH (2010) Magnesium, inflammation, and obesity in chronic disease. Nutr Rev 68:333–340

    Article  PubMed  Google Scholar 

  • Petit-Demouliere B, Chenu F, Bourin M (2005) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl) 177:245–255

    Article  CAS  Google Scholar 

  • Petrault I, Zimowska W, Mathieu J, Bayle D, Rock E, Favier A, Rayssiguier Y, Mazur A (2002) Changes in gene expression in rat thymocytes identified by cDNA array support the occurrence of oxidative stress in early magnesium deficiency. Biochim Biophys Acta 1586:92–98

    PubMed  CAS  Google Scholar 

  • Poleszak E, Szewczyk B, Kedzierska E, Wlaz P, Pilc A, Nowak G (2004) Antidepressant- and anxiolytic-like activity of magnesium in mice. Pharmacol Biochem Behav 78:7–12

    Article  PubMed  CAS  Google Scholar 

  • Poleszak E, Wlaz P, Kedzierska E, Nieoczym D, Wrobel A, Fidecka S, Pilc A, Nowak G (2007) NMDA/glutamate mechanism of antidepressant-like action of magnesium in forced swim test in mice. Pharmacol Biochem Behav 88:158–164

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen HH, Mortensen PB, Jensen IW (1989) Depression and magnesium deficiency. Int J Psychiatry Med 19:57–63

    Google Scholar 

  • Rayssiguier Y, Gueux E, Bussiere L, Durlach J, Mazur A (1993) Dietary magnesium affects susceptibility of lipoproteins and tissues to peroxidation in rats. J Am Coll Nutr 12:133–137

    PubMed  CAS  Google Scholar 

  • Rock E, Astier C, Lab C, Malpuech C, Nowacki W, Gueux E, Mazur A, Rayssiguier Y (1995) Magnesium deficiency in rats induces a rise in plasma nitric oxide. Magnes Res 8:237–242

    PubMed  CAS  Google Scholar 

  • Schimatschek HF, Rempis R (2001) Prevalence of hypomagnesemia in an unselected German population of 16, 000 individuals. Magnes Res 14:283–290

    PubMed  CAS  Google Scholar 

  • Schuchmann S, Albrecht D, Heinemann U, und Halbach O (2002) Nitric oxide modulates low-Mg2+-induced epileptiform activity in rat hippocampal-entorhinal cortex slices. Neurobiol Dis 11:96–105

    Article  PubMed  CAS  Google Scholar 

  • Sillaber I, Panhuysen M, Henniger MS, Ohl F, Kuhne C, Putz B, Pohl T, Deussing JM, Paez-Pereda M, Holsboer F (2008) Profiling of behavioral changes and hippocampal gene expression in mice chronically treated with the SSRI paroxetine. Psychopharmacology (Berl) 200:557–572

    Article  CAS  Google Scholar 

  • Singewald N, Sinner C, Hetzenauer A, Sartori SB, Murck H (2004) Magnesium-deficient diet alters depression- and anxiety-related behavior in mice—influence of desipramine and Hypericum perforatum extract. Neuropharmacology 47:1189–1197

    PubMed  CAS  Google Scholar 

  • Singewald N, Sartori SB, Shin JH, Lin L, Lubec G, Whittle N (2010) Magnesium- and zinc-deficiency models for depression: Involvement of NMDA/NO pathways. Biol Psychiatry 67:689

    Google Scholar 

  • Spasov AA, Iezhitsa IN, Kharitonova MV, Kravchenko MS (2008) Depression-like and anxiety-related behaviour of rats fed with magnesium-deficient diet. Zh Vyssh Nerv Deiat Im I P Pavlova 58:476–485

    Google Scholar 

  • Stafford RE, Mak IT, Kramer JH, Weglicki WB (1993) Protein oxidation in magnesium deficient rat brains and kidneys. Biochem Biophys Res Commun 196:596–600

    Article  PubMed  CAS  Google Scholar 

  • Takei N, Kondo J, Nagaike K, Ohsawa K, Kato K, Kohsaka S (1991) Neuronal survival factor from bovine brain is identical to neuron-specific enolase. J Neurochem 57:1178–1184

    Article  PubMed  CAS  Google Scholar 

  • Tschenett A, Singewald N, Carli M, Balducci C, Salchner P, Vezzani A, Herzog H, Sperk G (2003) Reduced anxiety and improved stress coping ability in mice lacking NPY-Y2 receptors. Eur J Neurosci 18:143–148

    Article  PubMed  Google Scholar 

  • Wegener G, Volke V, Harvey BH, Rosenberg R (2003) Local, but not systemic, administration of serotonergic antidepressants decreases hippocampal nitric oxide synthase activity. Brain Res 959:128–134

    Article  PubMed  CAS  Google Scholar 

  • Wegener G, Harvey BH, Bonefeld B, Müller HK, Volke V, Overstreet DH, Elfving B (2010) Increased stress-evoked nitric oxide signalling in the Flinders sensitive line (FSL) rat: a genetic animal model of depression. Int J Neuropsychopharmacol 13:461–473

    Google Scholar 

  • Weitzdorfer R, Hoger H, Burda G, Pollak A, Lubec G (2008) Differences in hippocampal protein expression at 3 days, 3 weeks, and 3 months following induction of perinatal asphyxia in the rat. J Proteome Res 7:1945–1952

    Article  PubMed  CAS  Google Scholar 

  • Whittle N, Lubec G, Singewald N (2009) Zinc deficiency induces enhanced depression-like behaviour and altered limbic activation reversed by antidepressant treatment in mice. Amino Acids 36:147–158

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G, Haynes TE, Li H, Yan W, Meininger CJ (2001) Glutamine metabolism to glucosamine is necessary for glutamine inhibition of endothelial nitric oxide synthesis. Biochem J 353:245–252

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed  CAS  Google Scholar 

  • Zafir A, Banu N (2007) Antioxidant potential of fluoxetine in comparison to Curcuma longa in restraint-stressed rats. Eur J Pharmacol 572:23–31

    Article  PubMed  CAS  Google Scholar 

  • Zafir A, Ara A, Banu N (2009) Invivo antioxidant status: a putative target of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry 33:220–228

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Patil SS, Chen WQ, An W, He J, Hoger H, Lubec G (2009) Hippocampal protein levels related to spatial memory are different in the Barnes maze and in the Multiple T-maze. J Proteome Res 8:4479–4486

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Richard Tessadri for the determination of Mg levels. This work was funded by the FWF (P22931-B18).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Lubec.

Additional information

N. Whittle and L. Li have contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 438 kb)

Supplementary material 2 (DOC 404 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whittle, N., Li, L., Chen, WQ. et al. Changes in brain protein expression are linked to magnesium restriction-induced depression-like behavior. Amino Acids 40, 1231–1248 (2011). https://doi.org/10.1007/s00726-010-0758-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0758-1

Keywords

Navigation