Skip to main content

Advertisement

Log in

Microwave-assisted solid-phase peptide synthesis of the 60–110 domain of human pleiotrophin on 2-chlorotrityl resin

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

A fast and efficient microwave-assisted solid phase peptide synthesis (MW-SPPS) of a 51mer peptide, the main heparin-binding site (60–110) of human pleiotrophin (hPTN), using 2-chlorotrityl chloride resin (CLTR-Cl) following the 9-fluorenylmethyloxycarbonyl/tert-butyl (Fmoc/tBu) methodology and with the standard N,N′-diisopropylcarbodiimide/1-hydroxybenzotriazole (DIC/HOBt) coupling reagents, is described. An MW-SPPS protocol was for the first time successfully applied to the acid labile CLTR-Cl for the faster synthesis of long peptides (51mer peptide) and with an enhanced purity in comparison to conventional SPPS protocols. The synthesis of such long peptides is not trivial and it is generally achieved by recombinant techniques. The desired linear peptide was obtained in only 30 h of total processing time and in 51% crude yield, in which 60% was the purified product obtained with 99.4% purity. The synthesized peptide was purified by reversed phase high performance liquid chromatography (RP-HPLC) and identified by electrospray ionization mass spectrometry (ESI-MS). Then, the regioselective formation of the two disulfide bridges of hPTN 60–110 was successfully achieved by a two-step procedure, involving an oxidative folding step in dimethylsulfoxide (DMSO) to form the Cys77–Cys109 bond, followed by iodine oxidation to form the Cys67–Cys99 bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Acm:

Acetamidomethyl

ACN:

Acetonitrile

AcOH:

Acetic acid

Boc:

tert-Butyloxybarbonyl

1-BuOH:

N-butanol

Bzl:

Benzyl

CLTR-Cl:

2-Chlorotrityl chloride

DCM:

Dichloromethane

DIC:

N,N′-diisopropylcarbodiimide

DIPEA:

Diisopropylethyamine

DMF:

N,N′-dimethylformamide

DMSO:

Dimethylsulfoxide

EDT:

1,2-Ethanedithiol

ESI-MS:

Electrospray ionization mass spectrometry

Fmoc:

9-Fluorenylmethyloxycarbonyl

HOBt:

1-Hydroxybenzotriazole

hPTN:

Human pleiotrophin

i-PrOH:

Isopropanol

MeOH:

Methanol

MW-SPPS:

Microwave-assisted solid-phase peptide synthesis

PTN:

Pleiotrophin

rhPTN:

Recombinant hPTN

tBu:

tert-Butyl

RP-HPLC:

Reversed phase high performance liquid chromatography

TFA:

Trifluoroacetic acid

TFE:

2,2,2-Trifluoroethanol

Tol:

Toluene

Trt:

Trityl

References

  • Albericio F, Hammer RP, García-Echevarría C, Molins M-A, Chang J, Munson M, Pons M, Giralt E, Barany G (1991) Cyclization of disulfide-containing peptides in solid-phase synthesis. Int J Pept Protein Res 37:402–413

    Article  PubMed  CAS  Google Scholar 

  • Alexopoulos K, Fatseas P, Melissari E, Vlahakos D, Roumelioti P, Mavromoustakos T, Mihailescu S, Paredes-Carbajal MC, Mascher D, Matsoukas J (2004) Design and synthesis of novel biologically active thrombin receptor non-peptide mimetics based on the pharmacophoric cluster Phe/Arg/NH2 of the Ser42-Phe-Leu-Leu-Arg46 motif sequence: platelet aggregation and relaxant activities. J Med Chem 47(13):3338–3352

    Article  PubMed  CAS  Google Scholar 

  • Bacsa B, Bösze S, Kappe CO (2010) Direct solid-phase synthesis of the β-amyloid (1–42) peptide using controlled microwave heating. J Org Chem 75:2103–2106

    Article  PubMed  CAS  Google Scholar 

  • Barlos K, Gatos D, Kapolos S, Papaphotiu G, Schafer W, Wenqing Y (1989) Esterification of partially protected peptide-fragments with resins—utilization of 2-chlorotritylchloride for synthesis of Leu-15-gastrin-I. Tetrahedron Lett 30:3947–3950

    Article  CAS  Google Scholar 

  • Bernard-Pierrot I, Delbe J, Caruelle D, Barritault D, Courty J, Milhiet PE (2001) The lysine-rich C-terminal tail of heparin affin regulatory peptide is required for mitogenic and tumor formation activities. J Biol Chem 276:12228–12234

    Google Scholar 

  • Caddick S, Fitzmaurice R (2009) Microwave enhanced synthesis. Tetrahedron 65(17):3325–3355

    Article  CAS  Google Scholar 

  • Chan WC, White PD (2000) Fmoc solid phase peptide synthesis: a practical approach. Oxford University Press Inc., New York

    Google Scholar 

  • Ducès A, Karaky R, Martel-Renoir D, Mir L, Hamma-Kourbali Y, Biéche I, Opolon P, Delbé J, Courty J, Perricaudet M, Griscelli F (2008) 16-kDa fragment of pleiotrophin acts on endothelial and breast tumor cells and inhibits tumor development. Mol Cancer Ther 7(9):2817–2827

    Google Scholar 

  • Felix AM, Heimer EP, Wang C-T, Lambros TJ, Swistok J, Roszkowski M, Ahmad M, Confalone D, Scott JW, Parker D, Meienhofer J, Trzeciak A, Gillessen D (1985) Synthesis of thymosin alpha-1 by fragment condensation using tert-butyl side chain protection. Int J Pept Protein Res 26:130–148

    Article  PubMed  CAS  Google Scholar 

  • Finley EL, Dillon J, Crouch RK, Schey KL (1998) Identification of tryptophan oxidation products in bovine alpha-crystallin. Protein Sci 7(11):2391–2397

    Article  PubMed  CAS  Google Scholar 

  • Friligou I, Agelis G, Matsoukas J, Tselios T (2008) Efficient microwave-assisted synthesis of myelin epitopes MOG35-55 and MOG97-108 using CLTR-CL resin. J Pept Sci 14(S1):90

    Google Scholar 

  • Galanis AS, Albericio F, Grøtli M (2008) Enhanced microwave-assisted method for on-bead disulfide bond formation: Synthesis of α-conotoxin MII. Peptide Science 92(1):23–34

    Google Scholar 

  • Galanis AS, Albericio F, Grøtli M (2009) Solid-phase peptide synthesis in water using microwave-assisted heating. Org Lett 11(20):4488–4491

    Article  PubMed  CAS  Google Scholar 

  • Góngora-Benítez M, Tulla-Puche J, Paradís-Bas M, Werbitzky O, Giraud M, Albericio F (2010) Optimized FMOC solid-phase synthesis of the Cysteine-rich peptide linaclotide. Biopolymers (Pept Sci). doi:10.1002/bip.21480

  • Hamma-Kourbali Y, Bernard-Pierrot I, Heroult M, Dalle S, Caruelle D, Milhiet PE, Fernig DG, Delbé J, Courty J (2008) Inhibition of the mitogenic, angiogenic and tumorigenic activities of pleiotrophin by a synthetic peptide corresponding to its C-thrombospondin repeat-I domain. J Cell Physiol 214:250–259

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Albericio F, Barany G (1997) Occurrence and minimization of cysteine racemization during stepwise solid-phase peptide synthesis. J Org Chem 62:4307–4312

    Article  PubMed  CAS  Google Scholar 

  • Hayes BL (2002) Microwave synthesis: chemistry at the speed of light. CEM Publishing, Matthews, NC

    Google Scholar 

  • Heggemann C, Budke C, Schomburg B, Majer Z, Wißbrock M, Koop T, Sewald N (2010) Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies. Amino Acids 38:213–222

    Article  PubMed  CAS  Google Scholar 

  • Héroult M, Bernard-Pierrot I, Delbé J, Hamma-Kourbali Y, Katsoris P, Barritault D, Papadimitriou E, Plouet J, Courty J (2004) Heparin affin regulatory peptide binds to vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. Oncogene 23:1745–1753

    Article  PubMed  Google Scholar 

  • Hulmes JD, Seddon AP, Decker MM, Böhlen P (1993) Comparison of the disulfide bond arrangements of human recombinant and bovine brain heparin binding neurite-promoting factors. Biochem Biophys Res Commun 192:738–746

    Article  PubMed  CAS  Google Scholar 

  • Inui T, Nakao M, Nishio H, Nishiuchi Y, Kojima S, Muramatsu T, Kimura T (2000) Solution synthesis and biological activity of human pleiotrophin, a novel heparinbinding neurotrophic factor consisting of 136 amino acid residues with five disulfide bonds. J Peptide Res 55:384–397

    Article  CAS  Google Scholar 

  • Isidro-Llobet A, Álvarez M, Albericio F (2009) Amino acid-protecting groups. Chem Rev 109:2455–2504

    Article  PubMed  CAS  Google Scholar 

  • Kamber B (1973) Die gezielte Synthese offenkettiger asymmetrischer Cystinpeptide mittels thiol-induzierter Fragmentierung von Sulfenylthiocarbonaten. Insulinfragmente mit intakter Disulfibrücke A20-B19. Helv Chim Acta 56:1370–1381

    Article  PubMed  CAS  Google Scholar 

  • Kamber B, Hartmann A, Eisler K, Riniker B, Rink H, Sieber P, Rittel W (1980) The synthesis of cystine peptides by iodine oxidation of S-trityl-cysteine and S-acetamidomethyl-cysteine peptides. Helv Chim Acta 63:899–915

    Article  CAS  Google Scholar 

  • Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284

    Article  CAS  Google Scholar 

  • Kates SA, Albericio F (2000) Solid phase synthesis: a practical guide. Marcel Dekker, New York

    Google Scholar 

  • Katsara M, Deraos G, Tselios T, Matsoukas MT, Friligou I, Matsoukas J, Apostolopoulos V (2009) Design and synthesis of a cyclic double mutant peptide (cyclo(87–99)[A91, A96]MBP87–99) induces altered responses in mice after conjugation to mannan: implications in the immunotherapy of multiple sclerosis. J Med Chem 52(1):214–218

    Article  PubMed  CAS  Google Scholar 

  • Kent SB, Alewood D, Alewood P, Baca M, Jones A, Schnolzer M (1992) Total chemical synthesis of proteins: evolution of solid phase synthetic methods illustrated by the total chemical syntheses of the HIV-1 protease. In: Epton R (ed) Innovation and perspectives in solid phase synthesis. Intercept Ltd. Andover, UK, pp 1–22

    Google Scholar 

  • Kilpelainen I, Kaksonen M, Kinnunen T, Avikainen H, Fath M, Linhardt RJ, Raulo E, Rauvala H (2000) Heparin-binding growth-associated molecule contains two heparin-binding beta-sheet domains that are homologous to the thrombospondin type I repeat. J Biol Chem 275:13564–13770

    Article  PubMed  CAS  Google Scholar 

  • Lamthanh H, Roumestand C, Deprun C, Menez A (1993) Side reaction during the deprotection of (S-acetamidomethyl)cysteine in a peptide with a high serine and threonine content. Int J Pept Protein Res 41(1):85–95

    Article  PubMed  CAS  Google Scholar 

  • Lamthanh H, Virelizier H, Frayssinhes D (1995) Side reaction of S-to-N acetamidomethyl shift during disulfide bond formation by iodine oxidation of S-acetamidomethyl-cysteine in a glutamine-containing peptide. Pept Res 8:316–320

    PubMed  CAS  Google Scholar 

  • Matsoukas JM, Agelis G, Hondrelis J, Yamdagni R, Wu Q, Ganter R, Moore D, Moore GJ, Smith JR (1993) Synthesis and biological activities of angiotensin II, sarilesin, and sarmesin analogs containing Aze or Pip at position 7. J Med Chem 36(7):904–911

    Article  PubMed  CAS  Google Scholar 

  • Matsoukas JM, Hondrelis J, Agelis G, Barlos K, Gatos D, Ganter R, Moore D, Moore GJ (1994) Novel synthesis of cyclic amide-linked analogs of angiotensins II and III. J Med Chem 37(18):2958–2969

    Article  PubMed  CAS  Google Scholar 

  • Matsoukas J, Panagiotopoulos D, Keramida M, Mavromoustakos T, Yamdagni R, Qiao W, Moore G, Saifeddine M, Hollenberg M (1996) Synthesis and contractile activities of cyclic thrombin receptor-derived peptide analogues with a Phe-Leu-Leu-Arg motif: importance of the Phe/Arg relative conformation and the primary amino group for activity. J Med Chem 39:3585–3591

    Article  PubMed  CAS  Google Scholar 

  • Mikelis C, Koutsioumpa M, Papadimitriou E (2007) Pleiotrophin as a possible new target for angiogenesis-related diseases and cancer. Recent Pat Anticancer Drug Discov 2:175–186

    Article  PubMed  CAS  Google Scholar 

  • Nagata K, Maruyama K, Nagasawa H, Urushibata I, Isogai A, Ishizaki H, Suzuki A (1992) Bombyxin-II and its disulfide bond isomers: synthesis and activity. Peptides 13:653–662

    Article  PubMed  CAS  Google Scholar 

  • Ori A, Free P, Courty J, Wilkinson MC, Fernig DG (2009) Identification of heparin-binding sites in proteins by selective labeling. Mol Cell Proteomics 8:2256–2265

    Article  PubMed  CAS  Google Scholar 

  • Palasek SA, Cox ZJ, Collins JM (2007) Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis. J Pept Sci 13:143–148

    Article  PubMed  CAS  Google Scholar 

  • Papadimitriou E, Mikelis C, Lampropoulou E, Koutsioumpa M, Theochari K, Tsirmoula S, Theodoropoulou C, Lamprou M, Sfaelou E, Vourtsis D, Boudouris P (2009) Roles of pleiotrophin in tumor growth and angiogenesis. Eur Cytokine Netw 20(4):180–190

    PubMed  CAS  Google Scholar 

  • Polykratis A, Delbé J, Courty J, Papadimitriou E, Katsoris P (2004) Identification of heparin affin regulatory peptide domains with potential role on angiogenesis. Int J Biochem Cell Biol 36:1954–1966

    Article  PubMed  CAS  Google Scholar 

  • Raulo E, Tumova S, Pavlov I, Pekkanen M, Hienola A, Klankki E, Kalkkinen N, Taira T, Kilpelaïnen I, Rauvala H (2005) The two thrombospondin type I repeat domains of the heparin-binding growth-associated molecule bind to heparin/heparan sulfate and regulate neurite extension and plasticity in hippocampal neurons. J Biol Chem 280:41576–41583

    Article  PubMed  CAS  Google Scholar 

  • Riddles PW, Blakeley RL, Zerner B (1979) Ellman’s reagent: 5,5′-dithiobis(2-nitrobenzoic acid): a reexamination. Anal Biochem 94:75–81

    Article  PubMed  CAS  Google Scholar 

  • Rizzolo F, Sabatino G, Chelli M, Rovero P, Papini AM (2007) A convenient microwave-enhanced solid-phase synthesis of difficult peptide sequences: case study of gramicidin A and CSF114(Glc). Int J Pept Res Ther 13:203–208

    Article  CAS  Google Scholar 

  • Sabatino G, Papini AM (2008) Advances in automatic, manual and microwave-assisted solid-phase peptide synthesis. Curr Opin Drug Discov Devel 11(6):762–770

    PubMed  CAS  Google Scholar 

  • Seddon AP, Hulmes JD, Decker MM, Kovesdi I, Fairhurst JL, Backer J, Dougher-Vermazen M, Böhlen P (1994) Refolding and characterization of human recombinant heparin-binding neurite-promoting factor. Protein Expr Purif 5:14–21

    Article  PubMed  CAS  Google Scholar 

  • Sewald N, Jakubke Η-D (2002) Peptides: chemistry and biology. Wiley-VCH Verlag GmbH & Co, KGaA, Germany

    Google Scholar 

  • Sieber P (1977) Der 2-trimethylsilyläthyl-rest als selektiv abspaltbare carboxy-schutzgruppe. Helv Chim Acta 60:2711–2716

    Article  CAS  Google Scholar 

  • Spyranti Z, Dalkas GA, Spyroulias GA, Mantzourani ED, Mavromoustakos T, Friligou I, Matsoukas JM, Tselios TV (2007) Putative bioactive conformations of amide linked cyclic myelin basic protein peptide analogues associated with experimental autoimmune encephalomyelitis. J Med Chem 50(24):6039–6047

    Article  PubMed  CAS  Google Scholar 

  • Tam JP, Wu C-R, Liu W, Zhang J-W (1991) Disulfide bond formation in peptides by dimethyl sulfoxide. J Am Chem Soc 113:6657–6662

    Article  CAS  Google Scholar 

  • Vasileiou Z, Barlos KK, Gatos D, Adermann K, Deraison C, Barlos K (2010) Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation. Biopolymers 94(3):339–349

    Article  PubMed  CAS  Google Scholar 

  • White P, Collins J, Cox Z (2005) Comparative study of conventional and microwave assisted synthesis. In: Poster presentation at the 19th American peptide symposium, San Diego, CA

  • Yamashiro D, Blake J, Li CH (1976) The use of trifluoroethanol for improved coupling in solid-phase peptide synthesis. Tetrahedron Lett 18:1469–1472

    Google Scholar 

Download references

Acknowledgments

This work was supported by the E.U.-European Social Fund (75%) and the Greek Ministry of Development-GSRT (25%) (Grant PENED2003, 036Δ560). Special thanks to Eldrug SA for providing access to CEM Liberty automated microwave peptide synthesizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore Tselios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friligou, I., Papadimitriou, E., Gatos, D. et al. Microwave-assisted solid-phase peptide synthesis of the 60–110 domain of human pleiotrophin on 2-chlorotrityl resin. Amino Acids 40, 1431–1440 (2011). https://doi.org/10.1007/s00726-010-0753-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0753-6

Keywords

Navigation