Vegetarianism, female gender and increasing age, but not CNDP1 genotype, are associated with reduced muscle carnosine levels in humans

Abstract

Carnosine is found in high concentrations in skeletal muscles, where it is involved in several physiological functions. The muscle carnosine content measured within a population can vary by a factor 4. The aim of this study was to further characterize suggested determinants of the muscle carnosine content (diet, gender and age) and to identify new determinants (plasma carnosinase activity and testosterone). We investigated a group of 149 healthy subjects, which consisted of 94 men (12 vegetarians) and 55 women. Muscle carnosine was quantified in M. soleus, gastrocnemius and tibialis anterior using magnetic resonance proton spectroscopy and blood samples were collected to determine CNDP1 genotype, plasma carnosinase activity and testosterone concentrations. Compared to women, men have 36, 28 and 82% higher carnosine concentrations in M. soleus, gastrocnemius and tibialis anterior muscle, respectively, whereas circulating testosterone concentrations were unrelated to muscle carnosine levels in healthy men. The carnosine content of the M. soleus is negatively related to the subjects’ age. Vegetarians have a lower carnosine content of 26% in gastrocnemius compared to omnivores. In contrast, there is no difference in muscle carnosine content between omnivores with a high or low ingestion of β-alanine. Muscle carnosine levels are not related to the polymorphism of the CNDP1 gene or to the enzymatic activity of the plasma carnosinase. In conclusion, neither CNDP1 genotype nor the normal variation in circulating testosterone levels affects the muscular carnosine content, whereas vegetarianism, female gender and increasing age are the factors associated with reduced muscle carnosine stores.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abe H (2000) Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Mosc) 65:757–765

    CAS  Google Scholar 

  2. Baguet A, Reyngoudt H, Pottier A, Everaert I, Callens S, Achten E, Derave W (2009) Carnosine loading and washout in human skeletal muscles. J Appl Physiol 106:837–842

    PubMed  Article  CAS  Google Scholar 

  3. Baguet A, Koppo K, Pottier A, Derave W (2010) β-Alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. Eur J Appl Physiol 108:495–503

    PubMed  Article  CAS  Google Scholar 

  4. Bando K, Shimotsuji T, Oyoshima H, Miyae K (1984) Fluorometric assay of human serum carnosinase activity in normal children, adults and patients with myopathy. Ann Clin Biochem 21:510–514

    PubMed  CAS  Google Scholar 

  5. Bate Smith EC (1938) The buffering of muscle in rigor: protein, phosphate and carnosine. J Physiol 92:336–343

    Google Scholar 

  6. Boldyrev AA (2007) Carnosine and oxidative stress in cells and tissues. Nova Science, New York

    Google Scholar 

  7. Burke DG, Chilibeck PD, Parise G, Candow DG, Mahoney D, Tarnopolsky M (2003) Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med Sci Sports Exerc 35:1946–1955

    PubMed  Article  CAS  Google Scholar 

  8. Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E (2007) β-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol 103:1736–1743

    PubMed  Article  CAS  Google Scholar 

  9. Derave W, Jones G, Hespel P, Harris RC (2008) Creatine supplementation augments skeletal muscle carnosine content in senescence-accelerated mice (SAMP8). Rejuvenation Res 11:641–647

    PubMed  Article  CAS  Google Scholar 

  10. Derave W, Everaert I, Beeckman S, Baguet A (2010) Muscle carnosine and β-alanine in relation to exercise and training. Sports Med 40:247–263

    PubMed  Article  Google Scholar 

  11. Drozak J, Veiga-da-Cunha M, Vertommen D, Stroobant V, Van Schaftingen E (2010) Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J Biol Chem 285:9346–9356

    PubMed  Article  CAS  Google Scholar 

  12. Dutka TL, Lamb GD (2004) Effect of carnosine on excitation–contraction coupling in mechanically-skinned rat skeletal muscle. J Muscle Res Cell Motil 25:203–213

    PubMed  Article  CAS  Google Scholar 

  13. Enette Larson-Meyer D (2006) Vegetarian sports nutrition. Human Kinetics, Champaign

    Google Scholar 

  14. Freedman BI, Hicks PJ, Sale MM, Pierson ED, Langefeld CD, Rich SS, Xu J, McDonough C, Janssen B, Yard BA, van der Woude FJ, Bowden DW (2007) A leucine repeat in the carnosinase gene CNDP1 is associated with diabetic end-stage renal disease in European Americans. Nephrol Dial Transplant 22:1131–1135

    PubMed  Article  CAS  Google Scholar 

  15. Harris RC, Dunnett M, Greenhaff PL (1998) Carnosine and taurine contents in individual fibres of human vastus lateralis muscle. J Sport Sci 16:639–643

    Article  Google Scholar 

  16. Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA (2006) The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 30:279–289

    PubMed  Article  CAS  Google Scholar 

  17. Harris RC, Jones G, Hill CA, Kendrick IP, Boobis LH, Kim CK, Kim HJ, Dang VH, Edge J, Wise JA (2007) The carnosine content of vastus lateralis in vegetarians and omnivores. FASEB J 21:A944

    Article  Google Scholar 

  18. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA (2007) Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids 32:225–233

    PubMed  Article  CAS  Google Scholar 

  19. Hipkiss AR, Michaelis J, Syrris P (1995) Non-enzymatic glycosylation of the dipeptide l-carnosine, a potential anti-protein-cross-linking agent. FEBS Lett 371:81–85

    PubMed  Article  CAS  Google Scholar 

  20. Janssen B, Hohenadel D, Brinkkoetter P, Peters V, Rind N, Fischer C, Rychlik I, Cerna M, Romzova M, de Heer E, Baelde H, Bakker SJ, Zirie M, Rondeau E, Mathieson P, Saleem MA, Meyer J, Koppel H, Sauerhoefer S, Bartram CR, Nawroth P, Hammes HP, Yard BA, Zschocke J, van der Woude FJ (2005) Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 54:2320–2327

    PubMed  Article  CAS  Google Scholar 

  21. Johnson P, Hammer JL (1992) Histidine dipeptide levels in ageing and hypertensive rat skeletal and cardiac muscles. Comp Biochem Physiol B 103:981–984

    PubMed  Article  CAS  Google Scholar 

  22. Kaufman JM, Vermeulen A (2005) The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev 26:833–876

    PubMed  Article  CAS  Google Scholar 

  23. Kendrick IP, Kim HJ, Harris RC, Kim CK, Dang VH, Lam TQ, Bui TT, Wise JA (2009) The effect of 4 weeks β-alanine supplementation and isokinetic training on carnosine concentrations in type I and II human skeletal muscle fibres. Eur J Appl Physiol 106:131–138

    PubMed  Article  CAS  Google Scholar 

  24. Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci USA 85:3175–3179

    PubMed  Article  CAS  Google Scholar 

  25. Lamont C, Miller D (1992) Calcium sensitizing action of carnosine and other endogenous imidazoles in chemically skinned striated muscle. J Physiol 454:421–434

    PubMed  CAS  Google Scholar 

  26. Mannion AF, Jakeman PM, Dunnett M, Harris RC, Willan PL (1992) Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans. Eur J Appl Physiol Occup Physiol 64:47–50

    PubMed  Article  CAS  Google Scholar 

  27. Mannion AF, Jakeman PM, Willan PL (1995) Skeletal muscle buffer value, fibre type distribution and high intensity exercise performance in man. Exp Physiol 80:89–101

    PubMed  CAS  Google Scholar 

  28. Marlin DJ, Harris RC, Gash SP, Snow DH (1989) Carnosine content of the middle gluteal muscle in thoroughbred horses with relation to age, sex and training. Comp Biochem Physiol A Comp Physiol 93:629–632

    PubMed  Article  CAS  Google Scholar 

  29. Mooyaart AL, van Valkengoed IG, Shaw PK, Peters V, Baelde HJ, Rabelink TJ, Bruijn JA, Stronks K, de Heer E (2009) Lower frequency of the 5/5 homozygous CNDP1 genotype in South Asian Surinamese. Diabetes Res Clin Pract 85:272–278

    PubMed  Article  CAS  Google Scholar 

  30. Mooyaart AL, Zutinic A, Bakker SJ, Grootendorst DC, Kleefstra N, van Valkengoed IG, Böhringer S, Bilo H, Dekker F, Bruijn JA, Navis G, Janssen B, Baelde H, De Heer E (2010) Association between CNDP1 genotype and diabetic nephropathy is sex-specific. Diabetes 59:1555–1559

    PubMed  Article  CAS  Google Scholar 

  31. Ozdemir MS, Reyngoudt H, De DY, Sazak HS, Fieremans E, Delputte S, D’Asseler Y, Derave W, Lemahieu I, Achten E (2007) Absolute quantification of carnosine in human calf muscle by proton magnetic resonance spectroscopy. Phys Med Biol 52:6781–6794

    PubMed  Article  CAS  Google Scholar 

  32. Parkhouse WS, McKenzie DC, Hochachka PW, Ovalle WK (1985) Buffering capacity of deproteinized human vastus lateralis muscle. J Appl Physiol 58:14–17

    PubMed  CAS  Google Scholar 

  33. Penafiel R, Ruzafa C, Monserrat F, Cremades A (2004) Gender-related differences in carnosine, anserine and lysine content of murine skeletal muscle. Amino Acids 26:53–58

    PubMed  Article  CAS  Google Scholar 

  34. Peters V, Kebbewar M, Jansen E, Jakobs C, Riedl E, Koeppel H, Frey D, Adelmann K, Klingbeil K, Mack M, Hoffmann GF, Janssen B, Zschocke J, Yard BA (2009) Relevance of allosteric conformations and homocarnosine concentration on carnosinase activity 38:1607–1615

    Google Scholar 

  35. Ponte J, Harris RC, Hill CA, Sale C, Jones GA, Kim HJ, Wise JA (2006) Effect of 14 and 28 days β-alanine supplementation on isometric endurance of the knee extensors. J Sports Sci 25:344

    Google Scholar 

  36. Riedl E, Koeppel H, Brinkkoetter P, Sternik P, Steinbeisser H, Sauerhoefer S, Janssen B, van der Woude FJ, Yard BA (2007) A CTG polymorphism in the CNDP1 gene determines the secretion of serum carnosinase in Cos-7 transfected cells. Diabetes 56:2410–2413

    PubMed  Article  CAS  Google Scholar 

  37. Sale C, Saunders B, Harris RC (2010) Effect of β-alanine supplementation on muscle carnosine concentration and exercise performance. Amino Acids 39:321–333

    PubMed  Article  CAS  Google Scholar 

  38. Simoneau JA, Bouchard C (1989) Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Physiol 257:E567–E572

    PubMed  CAS  Google Scholar 

  39. Staron RS, Hagerman FC, Hikida RS, Murray TF, Hostler DP, Crill MT, Ragg KE, Toma K (2000) Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem 48:623–629

    PubMed  CAS  Google Scholar 

  40. Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, Harris RC, O’Kroy J (2007) Effects of β-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids 32:381–386

    PubMed  Article  CAS  Google Scholar 

  41. Stout JR, Graves BS, Smith AE, Hartman MJ, Cramer JT, Beck TW, Harris RC (2008) The effect of β-alanine supplementation on neuromuscular fatigue in elderly (55–92 years): a double-blind randomized study. J Int Soc Sports Nutr 5:21

    PubMed  Article  Google Scholar 

  42. Stuerenburg HJ, Kunze K (1999) Concentrations of free carnosine (a putative membrane-protective antioxidant) in human muscle biopsies and rat muscles. Arch Gerontol Geriatr 29:107–113

    PubMed  Article  CAS  Google Scholar 

  43. Suzuki Y, Ito O, Mukai N, Takahashi H, Takamatsu K (2002) High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprinting. Jpn J Physiol 52:199–205

    PubMed  Article  CAS  Google Scholar 

  44. Suzuki Y, Nakao T, Maemura H, Sato M, Kamahara K, Morimatsu F, Takamatsu K (2006) Carnosine and anserine ingestion enhances contribution of nonbicarbonate buffering. Med Sci Sports Exerc 38:334–338

    PubMed  CAS  Google Scholar 

  45. Tallon MJ, Harris RC, Boobis LH, Fallowfield JL, Wise JA (2005) The carnosine content of vastus lateralis is elevated in resistance-trained bodybuilders. J Strength Cond Res 19:725–729

    PubMed  Google Scholar 

  46. Tallon MJ, Harris RC, Maffulli N, Tarnololsky M (2007) Carnosine, taurine and enzyme activities of human skeletal muscle fibres from elderly subjects with osteoarthritis and young moderately active subjects. Biogerontology 8:129–137

    PubMed  Article  CAS  Google Scholar 

  47. Teufel M, Saudek V, Ledig JP, Bernhardt A, Boularand S, Carreau A, Cairns NJ, Carter C, Cowley DJ, Duverger D, Ganzhorn AJ, Guenet C, Heintzelmann B, Laucher V, Sauvage C, Smirnova T (2003) Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem 278:6521–6531

    PubMed  Article  CAS  Google Scholar 

  48. Van Thienen R, Van Proeyen K, Vanden Eynde B, Puype J, Lefere T, Hespel P (2009) β-Alanine improves sprint performance in endurance cycling. Med Sci Sports Exerc 41:898–903

    PubMed  Article  Google Scholar 

  49. Vermeulen A, Verdonck L, Kaufman JM (1999) A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84:3666–3672

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by grants from the Research Foundation—Flanders (FWO 1.5.149.08 and G.0046.09) and by the EU-funded specifically targeted project, PREDICTIONS, to identify risk factors for developing diabetic nephropathy (FP6-018733, http://www.predictions-project.eu). Audrey Baguet is a recipient of a PhD-scholarship from the Research Foundation—Flanders. MRS was performed at GIfMI (http://www.gifmi.be). The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wim Derave.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Everaert, I., Mooyaart, A., Baguet, A. et al. Vegetarianism, female gender and increasing age, but not CNDP1 genotype, are associated with reduced muscle carnosine levels in humans. Amino Acids 40, 1221–1229 (2011). https://doi.org/10.1007/s00726-010-0749-2

Download citation

Keywords

  • Carnosine
  • Gender
  • Age
  • Vegetarianism
  • CNDP1 genotype
  • Androgens