Skip to main content
Log in

Enzymes of cysteine synthesis show extensive and conserved modifications patterns that include Nα-terminal acetylation

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Biosynthesis of cysteine is a two-step process in higher plants subsequently catalyzed by serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL) which are present in cytosol, plastids and mitochondria. Recently, the distribution of SAT and OAS-TL in these subcellular compartments was shown to be crucial for efficient cysteine synthesis in Arabidopsis thaliana. In this study, the abundances of OAS-TLs were quantified independently by immunological detection in crude protein extracts and by SAT affinity purification (SAP) of OAS-TL. OAS-TL A and B were evidenced to be the most abundant isoforms in all analyzed tissues, which is consistent with micro array-based transcript analyses. Application of SAP to Arabidopsis revealed significant modification of the major OAS-TL isoforms present in cytosol, plastids and mitochondria into up to seven subspecies. Specific OAS-TL isoforms were found to be differentially modified in the leaves, roots, stem and cell culture. Sulphur deficiency did not alter modification of OAS-TL proteins purified from cell culture that showed the highest complexity of OAS-TL modifications. However, the pattern of OAS-TL modification was found to be stable within an analyzed tissue, pointing not only to a high reproducibility of SAP but likely biological significance of each subspecies. The most abundant OAS-TL subspecies in cytosol and plastids were subject of N-terminal processing followed by acetylation of the newly originated N-terminus. The mode of Nα-terminal acetylation of OAS-TL and its possible biological function are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez C, Calo L, Romero LC, Garcia I, Gotor C (2010) An O-acetylserine(thiol)lyase homolog with l-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol 152:656–669

    Article  CAS  PubMed  Google Scholar 

  • Berkowitz O, Wirtz M, Wolf A, Kuhlmann J, Hell R (2002) Use of biomolecular interaction analysis to elucidate the regulatory mechanism of the cysteine synthase complex from Arabidopsis thaliana. J Biol Chem 277:30629–30634

    Article  CAS  PubMed  Google Scholar 

  • Bermudez MA, Paez-Ochoa MA, Gotor C, Romero LC (2010) Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control. Plant Cell 22:403–416

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Catrein I, Herrmann R, Bosserhoff A, Ruppert T (2005) Experimental proof for a signal peptidase I like activity in Mycoplasma pneumoniae, but absence of a gene encoding a conserved bacterial type I SPase. FEBS J 272:2892–2900

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  • Giglione C, Serero A, Pierre M, Boisson B, Meinnel T (2000) Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO J 19:5916–5929

    Article  CAS  PubMed  Google Scholar 

  • Haas FH, Heeg C, Queiroz R, Bauer A, Wirtz M, Hell R (2008) Mitochondrial serine acetyltransferase functions as a pacemaker of cysteine synthesis in plant cells. Plant Physiol 148:1055–1067

    Article  CAS  PubMed  Google Scholar 

  • Hatzfeld Y, Maruyama A, Schmidt A, Noji M, Ishizawa K, Saito K (2000) β-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiol 123:1163–1172

    Article  CAS  PubMed  Google Scholar 

  • Heeg C, Kruse C, Jost R, Gutensohn M, Ruppert T, Wirtz M, Hell R (2008) Analysis of the Arabidopsis O-acetylserine(thiol)lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. Plant Cell 20:168–185

    Article  CAS  PubMed  Google Scholar 

  • Hell R, Wirtz M (2008) Metabolism of cysteine in plants and phototrophic bacteria. In: Hell R, Dahl C, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Dordrecht, pp 61–94

    Chapter  Google Scholar 

  • Hell R, Jost R, Berkowitz O, Wirtz M (2002) Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant Arabidopsis thaliana. Amino Acids 22:245–257

    Article  CAS  PubMed  Google Scholar 

  • Hwang CS, Shemorry A, Varshavsky A (2010) N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327:973–977

    Article  CAS  PubMed  Google Scholar 

  • Initiative TAG (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Jost R, Berkowitz O, Wirtz M, Hopkins L, Hawkesford MJ, Hell R (2000) Genomic and functional characterization of the oas gene family encoding O-acetylserine (thiol) lyases, enzymes catalyzing the final step in cysteine biosynthesis in Arabidopsis thaliana. Gene 253:237–247

    Article  CAS  PubMed  Google Scholar 

  • Kiemer L, Bendtsen JD, Blom N (2005) NetAcet: prediction of N-terminal acetylation sites. Bioinformatics 21:1269–1270

    Article  CAS  PubMed  Google Scholar 

  • Kredich NM (1996) Biosynthesis of cysteine. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umberger E (eds) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology. ASM Press, Washington, DC, pp 514–527

    Google Scholar 

  • Krueger S, Niehl A, Lopez Martin MC, Steinhauser D, Donath A, Hildebrandt T, Romero LC, Hoefgen R, Gotor C, Hesse H (2009) Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis. Plant Cell Environ 32:349–367

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Mullen JR, Kayne PS, Moerschell RP, Tsunasawa S, Gribskov M, Colavito-Shepanski M, Grunstein M, Sherman F, Sternglanz R (1989) Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J 8:2067–2075

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Patron NJ, Durnford DG, Kopriva S (2008) Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers. BMC Evol Biol 8:39

    Article  PubMed  Google Scholar 

  • Polevoda B, Sherman F (2003a) Composition and function of the eukaryotic N-terminal acetyltransferase subunits. Biochem Biophys Res Commun 308:1–11

    Article  CAS  PubMed  Google Scholar 

  • Polevoda B, Sherman F (2003b) N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J Mol Biol 325:595–622

    Article  CAS  PubMed  Google Scholar 

  • Rist W, Mayer M, Andersen J, Roepstorff P, Jørgensen T (2005) Rapid desalting of protein samples for on-line microflow electrospray ionization mass spectrometry. Anal Biochem 342:160–162

    Article  CAS  PubMed  Google Scholar 

  • Ross S, Giglione C, Pierre M, Espagne C, Meinnel T (2005) Functional and developmental impact of cytosolic protein N-terminal methionine excision in Arabidopsis. Plant Physiol 137:623–637

    Article  CAS  PubMed  Google Scholar 

  • Rudhe C, Clifton R, Chew O, Zemam K, Richter S, Lamppa G, Whelan J, Glaser E (2004) Processing of the dual targeted precursor protein of glutathione reductase in mitochondria and chloroplasts. J Mol Biol 343:639–647

    Article  CAS  PubMed  Google Scholar 

  • Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol 3:188–195

    CAS  PubMed  Google Scholar 

  • Tocquin P, Corbesier L, Havelange A, Pieltain A, Kurtem E, Bernier G, Perilleux C (2003) A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biol 3:2

    Article  PubMed  Google Scholar 

  • Tsunasawa S, Stewart JW, Sherman F (1985) Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c. The specificities of methionine aminopeptidase and acetyltransferase. J Biol Chem 260:5382–5391

    CAS  PubMed  Google Scholar 

  • Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning ZB, Zeng R, Xiong Y, Guan KL, Zhao S, Zhao GP (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327:1004–1007

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Kusano M, Oikawa A, Fukushima A, Noji M, Saito K (2008a) Physiological roles of the β-substituted alanine synthase gene family in Arabidopsis. Plant Physiol 146:310–320

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Mochida K, Kato T, Tabata S, Yoshimoto N, Noji M, Saito K (2008b) Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis. Plant Cell 20:2484–2496

    Article  CAS  PubMed  Google Scholar 

  • Wirtz M, Droux M, Hell R (2004) O-Acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot 55:1785–1798

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Nakamura T, Kusano T, Sano H (2000) Three Arabidopsis genes encoding proteins with differential activities for cysteine synthase and β-cyanoalanine synthase. Plant Cell Physiol 41:465–476

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Kumada Y, Imanaka H, Imamura K, Nakanishi K (2006) Cloning, overexpression, purification, and characterization of O-acetylserine sulfhydrylase-B from Escherichia coli. Protein Expr Purif 47:607–613

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  CAS  PubMed  Google Scholar 

  • Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 3:e1994

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Dr. T. Brugger, BASF SE, for support with Edman sequencing. C.H. was generously supported by Landesgraduiertenkolleg BioQuant and the Schmeil Stiftung, Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Hell.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirtz, M., Heeg, C., Samami, A.A. et al. Enzymes of cysteine synthesis show extensive and conserved modifications patterns that include Nα-terminal acetylation. Amino Acids 39, 1077–1086 (2010). https://doi.org/10.1007/s00726-010-0694-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0694-0

Keywords

Navigation