Proteome analysis of microtubule-associated proteins and their interacting partners from mammalian brain

Abstract

The microtubule (MT) cytoskeleton is essential for a variety of cellular processes. MTs are finely regulated by distinct classes of MT-associated proteins (MAPs), which themselves bind to and are regulated by a large number of additional proteins. We have carried out proteome analyses of tubulin-rich and tubulin-depleted MAPs and their interacting partners isolated from bovine brain. In total, 573 proteins were identified giving us unprecedented access to brain-specific MT-associated proteins from mammalian brain. Most of the standard MAPs were identified and at least 500 proteins have been reported as being associated with MTs. We identified protein complexes with a large number of subunits such as brain-specific motor/adaptor/cargo complexes for kinesins, dynein, and dynactin, and proteins of an RNA-transporting granule. About 25% of the identified proteins were also found in the synaptic vesicle proteome. Analysis of the MS/MS data revealed many posttranslational modifications, amino acid changes, and alternative splice variants, particularly in tau, a key protein implicated in Alzheimer’s disease. Bioinformatic analysis of known protein–protein interactions of the identified proteins indicated that the number of MAPs and their associated proteins is larger than previously anticipated and that our database will be a useful resource to identify novel binding partners.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AMPPCP:

Adenylyl 5′-(β,γ-methylene)diphosphonate

ATP:

Adenosine triphosphate

EDTA:

Ethylenediaminetetraacetic acid

GTP:

Guanosine triphosphate

KLC:

Kinesin light chain

MAPs:

Microtubule-associated proteins

MgcRacGAP:

Rac GTPase-activating protein 1

MKLP-1:

Mitotic kinesin-like protein 1

MTs:

Microtubules

PIPES:

1,4-Piperazinediethanesulfonic acid

PMSF:

Phenylmethanesulfonylfluoride

SVP:

Synaptic vesicle protein

TAME:

N α -p-Tosyl-l-arginine methyl ester

References

  1. Alfarano C, Andrade CE, Anthony K, Bahroos N, Bajec M, Bantoft K, Betel D, Bobechko B, Boutilier K, Burgess E, Buzadzija K, Cavero R, D’Abreo C, Donaldson I, Dorairajoo D, Dumontier MJ, Dumontier MR, Earles V, Farrall R, Feldman H, Garderman E, Gong Y, Gonzaga R, Grytsan V, Gryz E, Gu V, Haldorsen E, Halupa A, Haw R, Hrvojic A, Hurrell L, Isserlin R, Jack F, Juma F, Khan A, Kon T, Konopinsky S, Le V, Lee E, Ling S, Magidin M, Moniakis J, Montojo J, Moore S, Muskat B, Ng I, Paraiso JP, Parker B, Pintilie G, Pirone R, Salama JJ, Sgro S, Shan T, Shu Y, Siew J, Skinner D, Snyder K, Stasiuk R, Strumpf D, Tuekam B, Tao S, Wang Z, White M, Willis R, Wolting C, Wong S, Wrong A, Xin C, Yao R, Yates B, Zhang S, Zheng K, Pawson T, Ouellette BF, Hogue CW (2005) The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res 33:D418–D424

    PubMed  CAS  Google Scholar 

  2. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM (2003) P-glycoprotein: from genomics to mechanism. Oncogene 22:7468–7485

    PubMed  CAS  Google Scholar 

  3. Amos LA, Schlieper D (2005) Microtubules and maps. Adv Protein Chem 71:257–298

    PubMed  CAS  Google Scholar 

  4. Aubert-Foucher E, Deleage G, Font B (1990) Do synapsin I and microtubule-associated proteins bind to a common site on polymerized tubulin? Biochem Int 22:821–827

    PubMed  CAS  Google Scholar 

  5. Bader GD, Betel D, Hogue CW (2003) BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 31:248–250

    PubMed  CAS  Google Scholar 

  6. Baines AJ, Bennett V (1986) Synapsin I is a microtubule-bundling protein. Nature 319:145–147

    PubMed  CAS  Google Scholar 

  7. Barsnes H, Vizcaino JA, Eidhammer I, Martens L (2009) PRIDE Converter: making proteomics data-sharing easy. Nat Biotechnol 27:598–599

    PubMed  CAS  Google Scholar 

  8. Bennett AF, Baines AJ (1992) Bundling of microtubules by synapsin 1. Characterization of bundling and interaction of distinct sites in synapsin 1 head and tail domains with different sites in tubulin. Eur J Biochem 206:783–792

    PubMed  CAS  Google Scholar 

  9. Berrueta L, Kraeft SK, Tirnauer JS, Schuyler SC, Chen LB, Hill DE, Pellman D, Bierer BE (1998) The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules. Proc Natl Acad Sci USA 95:10596–10601

    PubMed  CAS  Google Scholar 

  10. Berrueta L, Tirnauer JS, Schuyler SC, Pellman D, Bierer BE (1999) The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain. Curr Biol 9:425–428

    PubMed  CAS  Google Scholar 

  11. Bhaskar K, Shareef MM, Sharma VM, Shetty AP, Ramamohan Y, Pant HC, Raju TR, Shetty KT (2004) Co-purification and localization of Munc18-1 (p67) and Cdk5 with neuronal cytoskeletal proteins. Neurochem Int 44:35–44

    PubMed  CAS  Google Scholar 

  12. Bhat KM, Setaluri V (2007) Microtubule-associated proteins as targets in cancer chemotherapy. Clin Cancer Res 13:2849–2854

    PubMed  CAS  Google Scholar 

  13. Brown KR, Jurisica I (2005) Online predicted human interaction database. Bioinformatics 21:2076–2082

    PubMed  CAS  Google Scholar 

  14. Burre J, Volknandt W (2007) The synaptic vesicle proteome. J Neurochem 101:1448–1462

    PubMed  CAS  Google Scholar 

  15. Burre J, Beckhaus T, Schagger H, Corvey C, Hofmann S, Karas M, Zimmermann H, Volknandt W (2006) Analysis of the synaptic vesicle proteome using three gel-based protein separation techniques. Proteomics 6:6250–6262

    PubMed  CAS  Google Scholar 

  16. Cai Q, Pan PY, Sheng ZH (2007) Syntabulin-kinesin-1 family member 5B-mediated axonal transport contributes to activity-dependent presynaptic assembly. J Neurosci 27:7284–7296

    PubMed  CAS  Google Scholar 

  17. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333

    PubMed  CAS  Google Scholar 

  18. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G (2007) MINT: the Molecular INTeraction database. Nucleic Acids Res 35:D572–D574

    PubMed  CAS  Google Scholar 

  19. Chuong SD, Good AG, Taylor GJ, Freeman MC, Moorhead GB, Muench DG (2004) Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells. Mol Cell Proteomics 3:970–983

    PubMed  CAS  Google Scholar 

  20. Correas I, Avila J (1988) Erythrocyte protein 4.1 associates with tubulin. Biochem J 255:217–221

    PubMed  CAS  Google Scholar 

  21. Diefenbach RJ, Diefenbach E, Douglas MW, Cunningham AL (2002) The heavy chain of conventional kinesin interacts with the SNARE proteins SNAP25 and SNAP23. Biochemistry 41:14906–14915

    PubMed  CAS  Google Scholar 

  22. Dutcher SK (2001) The tubulin fraternity: alpha to eta. Curr Opin Cell Biol 13:49–54

    PubMed  CAS  Google Scholar 

  23. Echard A, Jollivet F, Martinez O, Lacapere JJ, Rousselet A, Janoueix-Lerosey I, Goud B (1998) Interaction of a golgi-associated kinesin-like protein with Rab6. Science 279:580–585

    PubMed  CAS  Google Scholar 

  24. Eichenmuller B, Ahrens DP, Li Q, Suprenant KA (2001) Saturable binding of the echinoderm microtubule-associated protein (EMAP) on microtubules, but not filamentous actin or vimentin filaments. Cell Motil Cytoskeleton 50:161–172

    PubMed  CAS  Google Scholar 

  25. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    PubMed  CAS  Google Scholar 

  26. Ferreira A, Niclas J, Vale RD, Banker G, Kosik KS (1992) Suppression of kinesin expression in cultured hippocampal neurons using antisense oligonucleotides. J Cell Biol 117:595–606

    PubMed  CAS  Google Scholar 

  27. Gache V, Waridel P, Luche S, Shevchenko A, Popov AV (2007) Purification and mass spectrometry identification of microtubule-binding proteins from Xenopus egg extracts. Methods Mol Med 137:29–43

    PubMed  CAS  Google Scholar 

  28. Gache V, Waridel P, Winter C, Juhem A, Schroeder M, Shevchenko A, Popov AV (2010) Xenopus meiotic microtubule-associated interactome. PLoS One 5:e9248

    PubMed  Google Scholar 

  29. Galiano MR, Andrieux A, Deloulme JC, Bosc C, Schweitzer A, Job D, Hallak ME (2006) Myelin basic protein functions as a microtubule stabilizing protein in differentiated oligodendrocytes. J Neurosci Res 84:534–541

    PubMed  CAS  Google Scholar 

  30. Gendreau S, Schirmer J, Schmalzing G (2003) Identification of a tubulin binding motif on the P2X2 receptor. J Chromatogr B Analyt Technol Biomed Life Sci 786:311–318

    PubMed  CAS  Google Scholar 

  31. Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257–271

    PubMed  CAS  Google Scholar 

  32. Goode BL, Wong JJ, Butty AC, Peter M, McCormack AL, Yates JR, Drubin DG, Barnes G (1999) Coronin promotes the rapid assembly and cross-linking of actin filaments and may link the actin and microtubule cytoskeletons in yeast. J Cell Biol 144:83–98

    PubMed  CAS  Google Scholar 

  33. Green LA, Liem RK (1989) Beta-internexin is a microtubule-associated protein identical to the 70-kDa heat-shock cognate protein and the clathrin uncoating ATPase. J Biol Chem 264:15210–15215

    PubMed  CAS  Google Scholar 

  34. Guldener U, Munsterkotter M, Oesterheld M, Pagel P, Ruepp A, Mewes HW, Stumpflen V (2006) MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res 34:D436–D441

    PubMed  Google Scholar 

  35. Gundersen GG, Cook TA (1999) Microtubules and signal transduction. Curr Opin Cell Biol 11:81–94

    PubMed  CAS  Google Scholar 

  36. Gyoeva FK, Sarkisov DV, Khodjakov AL, Minin AA (2004) The tetrameric molecule of conventional kinesin contains identical light chains. Biochemistry 43:13525–13531

    PubMed  CAS  Google Scholar 

  37. Hermjakob H, Fleischmann W, Apweiler R (1999) Swissknife—‘lazy parsing’ of SWISS-PROT entries. Bioinformatics 15:771–772

    PubMed  CAS  Google Scholar 

  38. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit H, Armstrong J, Bairoch A, Cesareni G, Sherman D, Apweiler R (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32:D452–D455

    PubMed  CAS  Google Scholar 

  39. Hill AM, Cassoly R, Chetrite G, Pantaloni D (1985) High molecular weight microtubule-associated proteins from pig brain are immunologically related to human erythrocyte membrane proteins spectrin, ankyrin, proteins 4.1 and 4.2. Biol Cell 53:141–147

    PubMed  CAS  Google Scholar 

  40. Hirokawa N, Noda Y (2008) Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev 88:1089–1118

    PubMed  CAS  Google Scholar 

  41. Homma N, Takei Y, Tanaka Y, Nakata T, Terada S, Kikkawa M, Noda Y, Hirokawa N (2003) Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114:229–239

    PubMed  CAS  Google Scholar 

  42. Honda A, Yamada M, Saisu H, Takahashi H, Mori KJ, Abe T (2002) Direct, Ca2+-dependent interaction between tubulin and synaptotagmin I: a possible mechanism for attaching synaptic vesicles to microtubules. J Biol Chem 277:20234–20242

    PubMed  CAS  Google Scholar 

  43. Hook P, Vallee RB (2006) The dynein family at a glance. J Cell Sci 119:4369–4371

    PubMed  CAS  Google Scholar 

  44. Huang JD, Brady ST, Richards BW, Stenolen D, Resau JH, Copeland NG, Jenkins NA (1999) Direct interaction of microtubule- and actin-based transport motors. Nature 397:267–270

    PubMed  CAS  Google Scholar 

  45. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    CAS  Google Scholar 

  46. Hughes JR, Meireles AM, Fisher KH, Garcia A, Antrobus PR, Wainman A, Zitzmann N, Deane C, Ohkura H, Wakefield JG (2008) A microtubule interactome: complexes with roles in cell cycle and mitosis. PLoS Biol 6:e98

    PubMed  Google Scholar 

  47. Inoue E, Mochida S, Takagi H, Higa S, Deguchi-Tawarada M, Takao-Rikitsu E, Inoue M, Yao I, Takeuchi K, Kitajima I, Setou M, Ohtsuka T, Takai Y (2006) SAD: a presynaptic kinase associated with synaptic vesicles and the active zone cytomatrix that regulates neurotransmitter release. Neuron 50:261–275

    PubMed  CAS  Google Scholar 

  48. Ishikawa M, Murofushi H, Sakai H (1983) Bundling of microtubules in vitro by fodrin. J Biochem 94:1209–1217

    PubMed  CAS  Google Scholar 

  49. Itoh TJ, Fujiwara T, Shibuya T, Akagawa K, Hotani H (1999) Inhibition of microtubule assembly by HPC-1/syntaxin 1A, an exocytosis relating protein. Cell Struct Funct 24:359–364

    PubMed  CAS  Google Scholar 

  50. Ivings L, Pennington SR, Jenkins R, Weiss JL, Burgoyne RD (2002) Identification of Ca2+-dependent binding partners for the neuronal calcium sensor protein neurocalcin delta: interaction with actin, clathrin and tubulin. Biochem J 363:599–608

    PubMed  CAS  Google Scholar 

  51. Jacob C, Giles GI, Giles NM, Sies H (2003) Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem Int Ed Engl 42:4742–4758

    PubMed  CAS  Google Scholar 

  52. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    PubMed  CAS  Google Scholar 

  53. Jungblut P, Thiede B, Zimny-Arndt U, Muller EC, Scheler C, Wittmann-Liebold B, Otto A (1996) Resolution power of two-dimensional electrophoresis and identification of proteins from gels. Electrophoresis 17:839–847

    PubMed  CAS  Google Scholar 

  54. Jungblut PR, Holzhutter HG, Apweiler R, Schluter H (2008) The speciation of the proteome. Chem Cent J 2:16

    PubMed  Google Scholar 

  55. Juwana JP, Henderikx P, Mischo A, Wadle A, Fadle N, Gerlach K, Arends JW, Hoogenboom H, Pfreundschuh M, Renner C (1999) EB/RP gene family encodes tubulin binding proteins. Int J Cancer 81:275–284

    PubMed  CAS  Google Scholar 

  56. Kanai Y, Dohmae N, Hirokawa N (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43:513–525

    PubMed  CAS  Google Scholar 

  57. Kann ML, Fouquet JP (1993) Association of spectrin with manchette microtubules in mammalian spermatids. Biol Cell 77:311–313

    PubMed  CAS  Google Scholar 

  58. Kavallaris M, Tait AS, Walsh BJ, He L, Horwitz SB, Norris MD, Haber M (2001) Multiple microtubule alterations are associated with Vinca alkaloid resistance in human leukemia cells. Cancer Res 61:5803–5809

    PubMed  CAS  Google Scholar 

  59. Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R, Kohler C, Khadake J, Leroy C, Liban A, Lieftink C, Montecchi-Palazzi L, Orchard S, Risse J, Robbe K, Roechert B, Thorneycroft D, Zhang Y, Apweiler R, Hermjakob H (2007) IntAct—open source resource for molecular interaction data. Nucleic Acids Res 35:D561–D565

    PubMed  CAS  Google Scholar 

  60. Kimura T, Watanabe H, Iwamatsu A, Kaibuchi K (2005) Tubulin and CRMP-2 complex is transported via Kinesin-1. J Neurochem 93:1371–1382

    PubMed  CAS  Google Scholar 

  61. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  CAS  Google Scholar 

  62. Liska AJ, Popov AV, Sunyaev S, Coughlin P, Habermann B, Shevchenko A, Bork P, Karsenti E, Shevchenko A (2004) Homology-based functional proteomics by mass spectrometry: application to the Xenopus microtubule-associated proteome. Proteomics 4:2707–2721

    PubMed  CAS  Google Scholar 

  63. Luton F (2005) The role of EFA6, exchange factor for Arf6, for tight junction assembly, functions, and interaction with the actin cytoskeleton. Methods Enzymol 404:332–345

    PubMed  CAS  Google Scholar 

  64. Maiato H, Sampaio P, Sunkel CE (2004) Microtubule-associated proteins and their essential roles during mitosis. Int Rev Cytol 241:53–153

    PubMed  Google Scholar 

  65. Mannan AU, Boehm J, Sauter SM, Rauber A, Byrne PC, Neesen J, Engel W (2006) Spastin, the most commonly mutated protein in hereditary spastic paraplegia interacts with Reticulon 1 an endoplasmic reticulum protein. Neurogenetics 7:93–103

    PubMed  CAS  Google Scholar 

  66. McKean PG, Vaughan S, Gull K (2001) The extended tubulin superfamily. J Cell Sci 114:2723–2733

    PubMed  CAS  Google Scholar 

  67. Mishima M, Kaitna S, Glotzer M (2002) Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2:41–54

    PubMed  CAS  Google Scholar 

  68. Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, Bala P, Shivakumar K, Anuradha N, Reddy R, Raghavan TM, Menon S, Hanumanthu G, Gupta M, Upendran S, Gupta S, Mahesh M, Jacob B, Mathew P, Chatterjee P, Arun KS, Sharma S, Chandrika KN, Deshpande N, Palvankar K, Raghavnath R, Krishnakanth R, Karathia H, Rekha B, Nayak R, Vishnupriya G, Kumar HG, Nagini M, Kumar GS, Jose R, Deepthi P, Mohan SS, Gandhi TK, Harsha HC, Deshpande KS, Sarker M, Prasad TS, Pandey A (2006) Human protein reference database—2006 update. Nucleic Acids Res 34:D411–D414

    PubMed  CAS  Google Scholar 

  69. Mollinedo F, Gajate C (2003) Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 8:413–450

    PubMed  CAS  Google Scholar 

  70. Moss DK, Lane JD (2006) Microtubules: forgotten players in the apoptotic execution phase. Trends Cell Biol 16:330–338

    PubMed  CAS  Google Scholar 

  71. Nakata T, Hirokawa N (2003) Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J Cell Biol 162:1045–1055

    PubMed  CAS  Google Scholar 

  72. Nakayama M, Kikuno R, Ohara O (2002) Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs. Genome Res 12:1773–1784

    PubMed  CAS  Google Scholar 

  73. Okajima T, Kawata Y, Hamaguchi K (1990) Chemical modification of tryptophan residues and stability changes in proteins. Biochemistry 29:9168–9175

    PubMed  CAS  Google Scholar 

  74. Orban-Nemeth Z, Simader H, Badurek S, Trancikova A, Propst F (2005) Microtubule-associated protein 1S, a short and ubiquitously expressed member of the microtubule-associated protein 1 family. J Biol Chem 280:2257–2265

    PubMed  CAS  Google Scholar 

  75. Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stumpflen V, Mewes HW, Ruepp A, Frishman D (2005) The MIPS mammalian protein-protein interaction database. Bioinformatics 21:832–834

    PubMed  CAS  Google Scholar 

  76. Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V, Niranjan V, Muthusamy B, Gandhi TK, Gronborg M, Ibarrola N, Deshpande N, Shanker K, Shivashankar HN, Rashmi BP, Ramya MA, Zhao Z, Chandrika KN, Padma N, Harsha HC, Yatish AJ, Kavitha MP, Menezes M, Choudhury DR, Suresh S, Ghosh N, Saravana R, Chandran S, Krishna S, Joy M, Anand SK, Madavan V, Joseph A, Wong GW, Schiemann WP, Constantinescu SN, Huang L, Khosravi-Far R, Steen H, Tewari M, Ghaffari S, Blobe GC, Dang CV, Garcia JG, Pevsner J, Jensen ON, Roepstorff P, Deshpande KS, Chinnaiyan AM, Hamosh A, Chakravarti A, Pandey A (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13:2363–2371

    PubMed  CAS  Google Scholar 

  77. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    PubMed  CAS  Google Scholar 

  78. Peter F, Nuoffer C, Pind SN, Balch WE (1994) Guanine nucleotide dissociation inhibitor is essential for Rab1 function in budding from the endoplasmic reticulum and transport through the Golgi stack. J Cell Biol 126:1393–1406

    PubMed  CAS  Google Scholar 

  79. Pollard TD, Earnshaw WC (2004) Cell biology. Elsevier, pp 589–593

  80. Razick S, Magklaras G, Donaldson IM (2008) iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics 9:405

    PubMed  Google Scholar 

  81. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5:599–609

    PubMed  CAS  Google Scholar 

  82. Roger B, Al-Bassam J, Dehmelt L, Milligan RA, Halpain S (2004) MAP2c, but not tau, binds and bundles F-actin via its microtubule binding domain. Curr Biol 14:363–371

    PubMed  CAS  Google Scholar 

  83. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 32:D449–D451

    PubMed  CAS  Google Scholar 

  84. Saoudi Y, Paintrand I, Multigner L, Job D (1995) Stabilization and bundling of subtilisin-treated microtubules induced by microtubule associated proteins. J Cell Sci 108(Pt 1):357–367

    PubMed  CAS  Google Scholar 

  85. Scales SJ, Hesser BA, Masuda ES, Scheller RH (2002) Amisyn, a novel syntaxin-binding protein that may regulate SNARE complex assembly. J Biol Chem 277:28271–28279

    PubMed  CAS  Google Scholar 

  86. Schluter H, Apweiler R, Holzhutter HG, Jungblut PR (2009) Finding one’s way in proteomics: a protein species nomenclature. Chem Cent J 3:11

    PubMed  Google Scholar 

  87. Schroer TA (2004) Dynactin. Annu Rev Cell Dev Biol 20:759–779

    PubMed  CAS  Google Scholar 

  88. Setou M, Nakagawa T, Seog DH, Hirokawa N (2000) Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288:1796–1802

    PubMed  CAS  Google Scholar 

  89. Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y, Kawagishi M, Hirokawa N (2002) Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417:83–87

    PubMed  CAS  Google Scholar 

  90. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    PubMed  CAS  Google Scholar 

  91. Sharp DJ, Yu W, Ferhat L, Kuriyama R, Rueger DC, Baas PW (1997) Identification of a microtubule-associated motor protein essential for dendritic differentiation. J Cell Biol 138:833–843

    PubMed  CAS  Google Scholar 

  92. Sharp DJ, Rogers GC, Scholey JM (2000) Microtubule motors in mitosis. Nature 407:41–47

    PubMed  CAS  Google Scholar 

  93. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539

    PubMed  CAS  Google Scholar 

  94. Su Q, Cai Q, Gerwin C, Smith CL, Sheng ZH (2004) Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nat Cell Biol 6:941–953

    PubMed  CAS  Google Scholar 

  95. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    PubMed  CAS  Google Scholar 

  96. UniProt consortium (2008) The universal protein resource (UniProt). Nucleic Acids Res 36:D190–D195

    Google Scholar 

  97. Utton MA, Noble WJ, Hill JE, Anderton BH, Hanger DP (2005) Molecular motors implicated in the axonal transport of tau and alpha-synuclein. J Cell Sci 118:4645–4654

    PubMed  CAS  Google Scholar 

  98. Vaughan L, Weber P, D’Alessandri L, Zisch AH, Winterhalter KH (1994) Tenascin-contactin/F11 interactions: a clue for a developmental role? Perspect Dev Neurobiol 2:43–52

    PubMed  CAS  Google Scholar 

  99. Verhey KJ, Meyer D, Deehan R, Blenis J, Schnapp BJ, Rapoport TA, Margolis B (2001) Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol 152:959–970

    PubMed  CAS  Google Scholar 

  100. Wade RH (2007) Microtubules: an overview. Methods Mol Med 137:1–16

    PubMed  CAS  Google Scholar 

  101. Wang JZ, Liu F (2008) Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 85:148–175

    PubMed  CAS  Google Scholar 

  102. Wang JZ, Grundke-Iqbal I, Iqbal K (2007) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25:59–68

    PubMed  Google Scholar 

  103. Williams RC Jr, Lee JC (1982) Preparation of tubulin from brain. Methods Enzymol 85(Pt B):376–385

    PubMed  CAS  Google Scholar 

  104. Xue J, Tsang CW, Gai WP, Malladi CS, Trimble WS, Rostas JA, Robinson PJ (2004) Septin 3 (G-septin) is a developmentally regulated phosphoprotein enriched in presynaptic nerve terminals. J Neurochem 91:579–590

    PubMed  CAS  Google Scholar 

  105. Ye K, Compton DA, Lai MM, Walensky LD, Snyder SH (1999) Protein 4.1N binding to nuclear mitotic apparatus protein in PC12 cells mediates the antiproliferative actions of nerve growth factor. J Neurosci 19:10747–10756

    PubMed  CAS  Google Scholar 

  106. Yoshida Y, Takei K (2005) Stimulation of dynamin GTPase activity by amphiphysin. Methods Enzymol 404:528–537

    PubMed  CAS  Google Scholar 

  107. Yu JZ, Rasenick MM (2006) Tau associates with actin in differentiating PC12 cells. FASEB J 20:1452–1461

    PubMed  CAS  Google Scholar 

  108. Yu LR, Zhu Z, Chan KC, Issaq HJ, Dimitrov DS, Veenstra TD (2007) Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. J Proteome Res 6:4150–4162

    PubMed  CAS  Google Scholar 

  109. Yuan A, Mills RG, Chia CP, Bray JJ (2000) Tubulin and neurofilament proteins are transported differently in axons of chicken motoneurons. Cell Mol Neurobiol 20:623–632

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bernd Thiede.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kozielski, F., Riaz, T., DeBonis, S. et al. Proteome analysis of microtubule-associated proteins and their interacting partners from mammalian brain. Amino Acids 41, 363–385 (2011). https://doi.org/10.1007/s00726-010-0649-5

Download citation

Keywords

  • Alternative splice variants
  • Brain
  • MAPs
  • Posttranslational modifications
  • Protein–protein interactions