Skip to main content

Advertisement

Log in

Adaptative response of nitrogen metabolism in early endotoxemia: role of ornithine aminotransferase

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Arginine (Arg) and glutamine (Gln) utilization is greatly increased during catabolic stress. While the supply of both amino acids has been advocated in this situation, arginine administration is possibly associated with deleterious effects. From a metabolic point of view, these two amino acids are reciprocal precursors via ornithine aminotransferase (OAT). We hypothesized that OAT plays a key role in the interconversion between Arg and Gln. To test this hypothesis, we evaluated the influence of OAT activity in a model of septic shock induced by intraperitoneal injection of lipopolysaccharide (LPS) in wild-type (WT) and transgenic mice overexpressing OAT (OAT) in the liver, kidney and intestine, i.e. the three main organs of OAT expression. Plasma and tissue amino acid concentrations and tissue OAT expression and activity were measured. Five hours after LPS injection, WT and OAT mice showed a similar response to LPS in terms of inflammatory cytokine production and protein catabolism, suggesting that the interconversion between Arg and Gln through this pathway remains limited. Endotoxemia led to a significant decrease in plasma Orn levels and an increase in liver Orn levels. Of note, Orn levels were always lower in OAT mice. While only plasma Arg and Gln remained unaffected by LPS treatment, hepatic Gln was significantly increased without any difference between the two genotypes. In this model of early endotoxemia, arginine and glutamine maintained their metabolic homeostasis. Our results show an inhibition of OAT activity and expression in the liver following LPS treatment. These data highlight the importance of OAT in ornithine metabolism, especially in the liver, and suggest a post-transcriptional regulation of OAT by LPS in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

OAT:

Ornithine aminotransferase

Gln:

Glutamine

Arg:

Arginine

LPS:

Lipopolysaccharide

WT:

Wild type

mOAT:

Murine OAT

hOAT:

Human OAT

References

  • Alonso E, Rubio V (1989) Participation of ornithine aminotransferase in the synthesis and catabolism of ornithine in mice. Studies using gabaculine and arginine deprivation. Biochem J 259:131–138

    CAS  PubMed  Google Scholar 

  • Barbul A, Wasserkrug HL, Yoshimura N, Tao R, Efron G (1984) High arginine levels in intravenous hyperalimentation abrogate post-traumatic immune suppression. J Surg Res 36:620–624

    Article  CAS  PubMed  Google Scholar 

  • Boon L, Geerts WJ, Jonker A, Lamers WH, Van Noorden CJ (1999) High protein diet induces pericentral glutamate dehydrogenase and ornithine aminotransferase to provide sufficient glutamate for pericentral detoxification of ammonia in rat liver lobules. Histochem Cell Biol 111:445–452

    Article  CAS  PubMed  Google Scholar 

  • Brillon DJ, Zheng B, Campbell RG, Matthews DE (1995) Effect of cortisol on energy expenditure and amino acid metabolism in humans. Am J Physiol 268:E501–E513

    CAS  PubMed  Google Scholar 

  • Bruins MJ, Deutz NE, Soeters PB (2003) Aspects of organ protein, amino acid and glucose metabolism in a porcine model of hypermetabolic sepsis. Clin Sci (Lond) 104:127–141

    Article  CAS  Google Scholar 

  • Cadoret A, Ovejero C, Saadi-Kheddouci S, Souil E, Fabre M, Romagnolo B, Kahn A, Perret C (2001) Hepatomegaly in transgenic mice expressing an oncogenic form of beta-catenin. Cancer Res 61:3245–3249

    CAS  PubMed  Google Scholar 

  • Chang HR, Bistrian B (1998) The role of cytokines in the catabolic consequences of infection and injury. JPEN J Parenter Enter Nutr 22:156–166

    Article  CAS  Google Scholar 

  • Colnot S, Romagnolo B, Lambert M, Cluzeaud F, Porteu A, Vandewalle A, Thomasset M, Kahn A, Perret C (1998) Intestinal expression of the calbindin-D9K gene in transgenic mice. Requirement for a Cdx2-binding site in a distal activator region. J Biol Chem 273:31939–31946

    Article  CAS  PubMed  Google Scholar 

  • Cunha WD, Friedler G, Vaisberg M, Egami MI, Costa Rosa LF (2003) Immunosuppression in undernourished rats: the effect of glutamine supplementation. Clin Nutr 22:453–457

    Article  CAS  PubMed  Google Scholar 

  • Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC, Corless M, Newsholme P (2005) Molecular mechanisms of glutamine action. J Cell Physiol 204:392–401

    Article  CAS  PubMed  Google Scholar 

  • Cynober LA (2002) Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition 18:761–766

    Article  CAS  PubMed  Google Scholar 

  • Darmaun D, Cynober L (2004) Approaches to studying amino acid metabolism: from quantitative assays to flux assessment using stable isotopes. In: Cynober L (ed) Amino acid metabolism and therapy in health and nutritional disease. CRC Press, Boca Raton, pp 45–61

  • Ewart HS, Qian D, Brosnan JT (1995) Activation of hepatic glutaminase in the endotoxin-treated rat. J Surg Res 59:245–249

    Article  CAS  PubMed  Google Scholar 

  • Gregori C, Porteu A, Mitchell C, Kahn A, Pichard AL (2002) In vivo functional characterization of the aldolase B gene enhancer. J Biol Chem 277:28618–28623

    Article  CAS  PubMed  Google Scholar 

  • Hallemeesch MM, Soeters PB, Deutz NE (2002) Renal arginine and protein synthesis are increased during early endotoxemia in mice. Am J Physiol Renal Physiol 28:F316–F323

    Google Scholar 

  • Herzfeld A, Knox WE (1968) The properties, developmental formation, and estrogen induction of ornithine aminotransferase in rat tissues. J Biol Chem 243:3327–3332

    CAS  PubMed  Google Scholar 

  • Kawamoto S, Ishida H, Mori M, Tatibana M (1982) Regulation of N-acetylglutamate synthetase in mouse liver. Postprandial changes in sensitivity to activation by arginine. Eur J Biochem 123:637–641

    Article  CAS  PubMed  Google Scholar 

  • Knopf RF, Conn JW, Floyd JC Jr, Fajans SS, Rull JA, Guntsche EM, Thiffault CA (1966) The normal endocrine response to ingestion of protein and infusions of amino acids. Sequential secretion of insulin and growth hormone. Trans Assoc Am Physicians 79:312–321

    CAS  PubMed  Google Scholar 

  • Levillain O, Ventura G, Déchaud H, Hobeika M, Meseguer A, Moinard C, Cynober L (2007) Sex-differential expression of ornithine aminotransferase in the mouse kidney. Am J Physiol Renal Physiol 292:F1016–F1027

    Article  CAS  PubMed  Google Scholar 

  • Luiking YC, Poeze M, Dejong CH, Ramsay G, Deutz NE (2004) Sepsis: an arginine deficiency state? Crit Care Med 32:2135–2145

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa T, Kobayashi T, Tashiro K, Kasahara M (1994) Changes in ornithine metabolic enzymes induced by dietary protein in small intestine and liver: intestine–liver relationship in ornithine supply to liver. J Biochem (Tokyo) 116:721–727

    CAS  Google Scholar 

  • Matthews DE (2007) An overview of phenylalanine and tyrosine kinetics in humans. J Nutr 137:1549S–1555S

    CAS  PubMed  Google Scholar 

  • Moinard C, Cynober L (2007) Citrulline: a new player in the control of nitrogen homeostasis. J Nutr 137:1621–1625

    Google Scholar 

  • Mueckler MM, Moran S, Pitot HC (1984) Transcriptional control of ornithine aminotransferase synthesis in rat kidney by estrogen and thyroid hormone. J Biol Chem 259:2302–2305

    CAS  PubMed  Google Scholar 

  • Neveux N, David P, Cynober L (2004) Measurement of amino acid concentration in biological fluids and tissues using ion-exchange chromatography. In: Cynober L (ed) Metabolic and therapeutic aspects of amino acids in clinical nutrition. CRC Press, Boca Raton, pp 17–28

    Google Scholar 

  • Oudemans-van Straaten HM, Bosman RJ, Treskes M, van der Spoel HJ, Zandstra DF (2001) Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med 27:84–90

    Article  CAS  PubMed  Google Scholar 

  • Peraino C, Bunville LG, Tahmisian TN (1969) Chemical, physical, and morphological properties of ornithine aminotransferase from rat liver. J Biol Chem 244:2241–2249

    CAS  PubMed  Google Scholar 

  • Schlegel L, Coudray-Lucas C, Barbut F, Le BJ, Pernet P, Cynober L (1999) Bacterial dissemination, rather than translocation, mediates hypermetabolic response in endotoxemic rats. Crit Care Med 27:1511–1516

    Article  CAS  PubMed  Google Scholar 

  • Silbernagl S, Volker K, Dantzler WH (1996) Compartmentation of amino acids in the rat kidney. Am J Physiol 270:F154–F163

    CAS  PubMed  Google Scholar 

  • Souba WW, Herskowitz K, Klimberg VS, Salloum RM, Plumley DA, Flynn TC, Copeland EM III (1990) The effects of sepsis and endotoxemia on gut glutamine metabolism. Ann Surg 211:543–549

    Article  CAS  PubMed  Google Scholar 

  • Strecker HJ (1965) Purification and properties of rat liver ornithine delta-transaminase. J Biol Chem 240:1225–1230

    CAS  PubMed  Google Scholar 

  • Tessari P, Inchiostro S, Barazzoni R, Zanetti M, Vettore M, Biolo G, Iori E, Kiwanuka E, Tiengo A (1996) Hyperglucagonemia stimulates phenylalanine oxidation in humans. Diabetes 45:463–470

    Article  CAS  PubMed  Google Scholar 

  • Ventura G, De Bandt JP, Segaud F, Perret C, Robic D, Levillain O, Le Plenier S, Godard C, Cynober L, Moinard C (2009) Overexpression of ornithine aminotransferase: consequences on amino acid homeostasis. Br J Nutr 101:843–851

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Lawler AM, Steel G, Sipila I, Milam AH, Valle D (1995) Mice lacking ornithine-delta-aminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration. Nat Genet 11:185–190

    Article  PubMed  Google Scholar 

  • Windsor JA, Hill GL (1988) Weight loss with physiologic impairment. A basic indicator of surgical risk. Ann Surg 207:290–296

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. De Bandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, G., Moinard, C., Segaud, F. et al. Adaptative response of nitrogen metabolism in early endotoxemia: role of ornithine aminotransferase. Amino Acids 39, 1417–1426 (2010). https://doi.org/10.1007/s00726-010-0601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0601-8

Keywords

Navigation