Skip to main content

Advertisement

Log in

Proline metabolism and transport in plant development

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Proline fulfils diverse functions in plants. As amino acid it is a structural component of proteins, but it also plays a role as compatible solute under environmental stress conditions. Proline metabolism involves several subcellular compartments and contributes to the redox balance of the cell. Proline synthesis has been associated with tissues undergoing rapid cell divisions, such as shoot apical meristems, and appears to be involved in floral transition and embryo development. High levels of proline can be found in pollen and seeds, where it serves as compatible solute, protecting cellular structures during dehydration. The proline concentrations of cells, tissues and plant organs are regulated by the interplay of biosynthesis, degradation and intra- as well as intercellular transport processes. Among the proline transport proteins characterized so far, both general amino acid permeases and selective compatible solute transporters were identified, reflecting the versatile role of proline under stress and non-stress situations. The review summarizes our current knowledge on proline metabolism and transport in view of plant development, discussing regulatory aspects such as the influence of metabolites and hormones. Additional information from animals, fungi and bacteria is included, showing similarities and differences to proline metabolism and transport in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ábrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    Article  PubMed  Google Scholar 

  • Amberger-Ochsenbauer S, Obendorfer J (1988) Levels of free proline in ornamental plants: I. Influence of plant age, leaf age, and leaf region in Saintpaulia and Chrysanthemum. J Plant Physiol 132:758–761

    CAS  Google Scholar 

  • Andréasson C, Neve EPA, Ljungdahl PO (2004) Four permeases import proline and the toxic proline analogue azetidine-2-carboxylate into yeast. Yeast 21:193–199

    Article  PubMed  CAS  Google Scholar 

  • Aral B, Kamoun P (1997) The proline biosynthesis in living organisms. Amino Acids 13:189–217

    Article  CAS  Google Scholar 

  • Aral B, Schlenzig JS, Liu G, Kamoun P (1996) Database cloning human Δ1-pyrroline-5-carboxylate synthetase (P5CS) cDNA: a bifunctional enzyme catalyzing the first two steps in proline biosynthesis. C R Acad Sci III 319:171–178

    PubMed  CAS  Google Scholar 

  • Armengaud P, Thiery L, Buhot N, Grenier-de March G, Savouré A (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant 120:442–450

    Article  PubMed  CAS  Google Scholar 

  • Atlante A, Passarella S, Pierro P, Martino C, Quagliariello E (1996) The mechanism of proline/glutamate antiport in rat kidney mitochondria. Eur J Biochem 241:171–177

    Article  PubMed  CAS  Google Scholar 

  • Ayliffe MA, Mitchell HJ, Deuschle K, Pryor AJ (2005) Comparative analysis in cereals of a key proline catabolism gene. Mol Genet Genomics 274:494–505

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner MR, Rabier D, Nassogne MC, Dufier JL, Padovani JP, Kamoun P, Valle D, Saudubray JM (2005) Δ1-Pyrroline-5-carboxylate synthase deficiency: neurodegeneration, cataracts and connective tissue manifestations combined with hyperammonaemia and reduced ornithine, citrulline, arginine and proline. Eur J Pediatr 164:31–36

    Article  PubMed  CAS  Google Scholar 

  • Bialczyk J, Lechowski Z, Dziga D (2004) Composition of the xylem sap of tomato seedlings cultivated on media with HCO3 and nitrogen source as NO3 or NH4 +. Plant Soil 263:265–272

    Article  CAS  Google Scholar 

  • Bicknell LS, Pitt J, Aftimos S, Ramadas R, Maw MA, Robertson SP (2008) A missense mutation in ALDH18A1, encoding Δ1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome. Eur J Hum Genet 16:1176–1186

    Article  PubMed  CAS  Google Scholar 

  • Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD, Twell D, Sze H (2006) Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol 140:1151–1168

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Bonner CA, Williams DS, Aldrich HC, Jensen RA (1996) Antagonism by l-glutamine of toxicity and growth inhibition caused by other amino acids in suspension cultures of Nicotiana silvestris. Plant Sci 113:43–58

    Article  CAS  Google Scholar 

  • Boorer KJ, Frommer WB, Bush DR, Kreman M, Loo DDF, Wright EM (1996) Kinetics and specificity of a H+/amino acid transporter from Arabidopsis thaliana. J Biol Chem 271:2213–2220

    Article  PubMed  CAS  Google Scholar 

  • Breitkreuz KE, Shelp BJ, Fischer WN, Schwacke R, Rentsch D (1999) Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. FEBS Lett 450:280–284

    Article  PubMed  CAS  Google Scholar 

  • Brugière N, Dubois F, Limami AM, Lelandais M, Roux Y, Sangwan RS, Hirel B (1999) Glutamine synthetase in the phloem plays a major role in controlling proline production. Plant Cell 11:1995–2012

    Article  PubMed  Google Scholar 

  • Carter C, Shafir S, Yehonatan L, Palmer R, Thornburg R (2006) A novel role for proline in plant floral nectars. Naturwissenschaften 93:72–79

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Bush DR (1997) LHT1, a lysine- and histidine-specific amino acid transporter in Arabidopsis. Plant Physiol 115:1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Chen NH, Reith MEA, Quick MW (2004) Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflüg Arch Eur J Physiol 447:519–531

    Article  CAS  Google Scholar 

  • Chiang H, Dandekar AM (1995) Regulation of proline accumulation in Arabidopsis thaliana (L.) Heynh during development and in response to desiccation. Plant Cell Environ 18:1280–1290

    Article  CAS  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Mol Biol Rev 53:121–147

    CAS  Google Scholar 

  • Csonka LN, Gelvin SB, Goodner BW, Orser CS, Siemieniak D, Slightom JL (1988) Nucleotide sequence of a mutation in the proB gene of Escherichia coli that confers proline overproduction and enhanced tolerance to osmotic stress. Gene 64:199–205

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci 99:16314–16318

    Article  PubMed  CAS  Google Scholar 

  • Deuschle K, Funck D, Hellmann H, Däschner K, Binder S, Frommer WB (2001) A nuclear gene encoding mitochondrial Δ1-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity. Plant J 27:345–355

    Article  PubMed  CAS  Google Scholar 

  • Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, van der Graaff E, Kunze R, Frommer WB (2004) The role of ∆1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16:3413–3425

    Article  PubMed  CAS  Google Scholar 

  • Di Martino C, Pizzuto R, Pallotta M, De Santis A, Passarella S (2006) Mitochondrial transport in proline catabolism in plants: the existence of two separate translocators in mitochondria isolated from durum wheat seedlings. Planta 223:1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Donald SP, Sun XY, Hu CAA, Yu J, Mei JM, Valle D, Phang JM (2001) Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res 61:1810–1815

    PubMed  CAS  Google Scholar 

  • Dougherty KM, Brandriss MC, Valle D (1992) Cloning human pyrroline-5-carboxylate reductase cDNA by complementation in Saccharomyces cerevisiae. J Biol Chem 267:871–875

    PubMed  CAS  Google Scholar 

  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224

    Article  CAS  Google Scholar 

  • Elthon TE, Stewart CR (1982) Proline oxidation in corn mitochondria: involvement of NAD, relationship to ornithine metabolism, and sidedness on the inner membrane. Plant Physiol 70:567–572

    Article  PubMed  CAS  Google Scholar 

  • Elthon TE, Stewart CR, Bonner WD (1984) Energetics of proline transport in corn mitochondria. Plant Physiol 75:951–955

    Article  PubMed  CAS  Google Scholar 

  • Fabro G, Kovács I, Pavet V, Szabados L, Alvarez ME (2004) Proline accumulation and AtP5CS2 gene activation are induced by plant–pathogen incompatible interactions in Arabidopsis. Mol Plant Microbe Interact 17:343–350

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein R, Gampala S, Rock C (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    PubMed  CAS  Google Scholar 

  • Fischer WN (1997) Substratspezifität und Transportmechanismus pflanzlicher Aminosäuren in Relation zu ihrer physiologischen Funktion. Dissertation, Eberhard-Karls-University Tübingen, Germany

  • Fischer WN, Kwart M, Hummel S, Frommer WB (1995) Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J Biol Chem 270:16315–16320

    Article  PubMed  CAS  Google Scholar 

  • Fischer WN, Loo DDF, Koch W, Ludewig U, Boorer KJ, Tegeder M, Rentsch D, Wright EM, Frommer WB (2002) Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids. Plant J 29:717–731

    Article  PubMed  CAS  Google Scholar 

  • Forlani G, Scainelli D, Nielsen E (1997) Two Δ1-pyrroline-5-carboxylate dehydrogenase isoforms are expressed in cultured Nicotiana plumbaginifolia cells and are differentially modulated during the culture growth cycle. Planta 202:242

    Article  CAS  Google Scholar 

  • Foster J, Lee YH, Tegeder M (2008) Distinct expression of members of the LHT amino acid transporter family in flowers indicates specific roles in plant reproduction. Sex Plant Reprod 21:143–152

    Article  CAS  Google Scholar 

  • Frommer WB, Hummel S, Riesmeier JW (1993) Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proc Natl Acad Sci 90:5944–5948

    Article  PubMed  CAS  Google Scholar 

  • Frommer WB, Hummel S, Unseld M, Ninnemann O (1995) Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis. Proc Natl Acad Sci 92:12036–12040

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Maggio A, García-Ríos M, Bressan RA, Csonka LN (1998) Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for ∆1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiol 118:661–674

    Article  PubMed  CAS  Google Scholar 

  • Funck D, Stadelhofer B, Koch W (2008) Ornithine-δ-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol 8:40

    Article  PubMed  CAS  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102

    Article  PubMed  CAS  Google Scholar 

  • Ginzberg I, Stein H, Kapulnik Y, Szabados L, Strizhov N, Schell J, Koncz C, Zilberstein A (1998) Isolation and characterization of two different cDNAs of Δ1-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Mol Biol 38:755–764

    Article  PubMed  CAS  Google Scholar 

  • Girousse C, Bournoville R, Bonnemain JL (1996) Water deficit-induced changes in concentrations in proline and some other amino acids in the phloem sap of alfalfa. Plant Physiol 111:109–113

    PubMed  CAS  Google Scholar 

  • Grallath S, Weimar T, Meyer A, Gumy C, Suter-Grotemeyer M, Neuhaus J-M, Rentsch D (2005) The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns. Plant Physiol 137:117–126

    Article  PubMed  CAS  Google Scholar 

  • Grenson M, Hou C, Crabeel M (1970) Multiplicity of the amino acid permeases in Saccharomyces cerevisiae IV. Evidence for a general amino acid permease. J Bacteriol 103:770–777

    PubMed  CAS  Google Scholar 

  • Hammes UZ, Nielsen E, Honaas LA, Taylor CG, Schachtman DP (2006) AtCAT6, a sink-tissue-localized transporter for essential amino acids in Arabidopsis. Plant J 48:414–426

    Article  PubMed  CAS  Google Scholar 

  • Hanson AD, Tully RE (1979) Amino acids translocated from turgid and water-stressed barley leaves: II. Studies with 13N and 14C. Plant Physiol 64:467–471

    Article  PubMed  CAS  Google Scholar 

  • Hanson J, Hanssen M, Wiese A, Hendriks MMWB, Smeekens S (2008) The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of Asparagine Synthetase1 and Proline Dehydrogenase2. Plant J 53:935–949

    Article  PubMed  CAS  Google Scholar 

  • Hare PD, Cress WA (1996) Tissue-specific accumulation of transcript encoding Δ1-pyrrolline-5-carboxylate reductase in Arabidopsis thaliana. Plant Growth Regul 19:249–256

    Article  CAS  Google Scholar 

  • Hare PD, Cress W, van Staden J (1999) Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J Exp Bot 50:413–434

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, van Staden J (2002) Disruptive effects of exogenous proline on chloroplast and mitochondrial ultrastructure in Arabidopsis leaves. S Afr J Bot 68:393–396

    CAS  Google Scholar 

  • Hare PD, Cress WA, van Staden J (2003) A regulatory role for proline metabolism in stimulating Arabidopsis thaliana seed germination. Plant Growth Regul 39:41–50

    Article  CAS  Google Scholar 

  • Hayashi F, Ichino T, Osanai M, Wada K (2000) Oscillation and regulation of proline content by P5CS and ProDH gene expressions in the light/dark cycles in Arabidopsis thaliana L. Plant Cell Physiol 41:1096–1101

    Article  PubMed  CAS  Google Scholar 

  • Hellmann H, Funck D, Rentsch D, Frommer WB (2000) Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiol 123:779–789

    Article  PubMed  CAS  Google Scholar 

  • Hien DT, Jacobs M, Angenon G, Hermans C, Thu TT, Son LV, Roosens NH (2003) Proline accumulation and Δ1-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance. Plant Sci 165:1059–1068

    Article  CAS  Google Scholar 

  • Hirner B, Fischer WN, Rentsch D, Kwart M, Frommer WB (1998) Developmental control of H+/amino acid permease gene expression during seed development of Arabidopsis. Plant J 14:535–544

    Article  PubMed  CAS  Google Scholar 

  • Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85

    Article  PubMed  Google Scholar 

  • Horner M, Pratt ML (1979) Amino acid analysis of in vivo and androgenic anthers of Nicotiana tabacum. Protoplasma 98:279–282

    Article  CAS  Google Scholar 

  • Hu CA, Delauney AJ, Verma DP (1992) A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci 89:9354–9358

    Article  PubMed  CAS  Google Scholar 

  • Hu CA, Lin WW, Obie C, Valle D (1999) Molecular enzymology of mammalian Δ1-pyrroline-5-carboxylate synthase. J Biol Chem 274:6754–6762

    Article  PubMed  CAS  Google Scholar 

  • Hu CA, Khalil S, Zhaorigetu S, Liu Z, Tyler M, Wan G, Valle D (2008a) Human Δ1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 35:665–672

    Article  PubMed  CAS  Google Scholar 

  • Hu CA, Bart Williams D, Zhaorigetu S, Khalil S, Wan G, Valle D (2008b) Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes. Amino Acids 35:655–664

    Article  PubMed  CAS  Google Scholar 

  • Hua XJ, van de Cotte B, van Montagu M, Verbruggen N (1997) Developmental regulation of pyrroline-5-carboxylate reductase gene expression in Arabidopsis. Plant Physiol 114:1215–1224

    Article  PubMed  CAS  Google Scholar 

  • Hur J, Jung KH, Lee CH, An G (2004) Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci 167:417–426

    Article  CAS  Google Scholar 

  • Igarashi Y, Yoshiba Y, Takeshita T, Nomura S, Otomo J, Yamaguchi-Shinozaki K, Shinozaki K (2000) Molecular cloning and characterization of a cDNA encoding proline transporter in rice. Plant Cell Physiol 41:750–756

    Article  PubMed  CAS  Google Scholar 

  • Jauniaux JC, Vandenbol M, Vissers S, Broman K, Grenson M (1987) Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae. Eur J Biochem 164:601–606

    Article  PubMed  CAS  Google Scholar 

  • Joyce PS, Paleg LG, Aspinall D (1984) The requirement for low-intensity light in the accumulation of proline as a response to water deficit. J Exp Bot 35:209–218

    Article  CAS  Google Scholar 

  • Kanade M (2008) Effect of foliar application of salicylic acid on polyphenol, proline and carbohydrates content in wheat and sorghum. Adv Plant Sci 21:321–322

    CAS  Google Scholar 

  • Kavi Kishor PB, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of ∆1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  PubMed  CAS  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    Article  PubMed  CAS  Google Scholar 

  • Khodary SEA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Int J Agr Biol 6:5–8

    CAS  Google Scholar 

  • Khoo U, Stinson HT (1957) Free amino acid differences between cytoplasmic male sterile and normal fertile anthers. Proc Natl Acad Sci 43:603–607

    Article  PubMed  CAS  Google Scholar 

  • Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8:1323–1335

    Article  PubMed  CAS  Google Scholar 

  • Krämer R (1998) Mitochondrial carrier proteins can reversibly change their transport mode: the cases of the aspartate/glutamate and the phosphate carrier. Exp Physiol 83:259–265

    PubMed  Google Scholar 

  • Krogaard H, Andersen AS (1983) Free amino acids of Nicotiana alata anthers during development in vivo. Physiol Plant 57:527–531

    Article  CAS  Google Scholar 

  • Kwart M, Hirner B, Hummel S, Frommer WB (1993) Differential expression of two related amino acid transporters with differing substrate specificity in Arabidopsis thaliana. Plant J 4:993–1002

    Article  PubMed  CAS  Google Scholar 

  • Lansac AR, Sullivan CY, Johnson BE (1996) Accumulation of free proline in sorghum (Sorghum bicolor) pollen. Can J Bot 74:40–45

    Article  CAS  Google Scholar 

  • Larher F, Leport L, Petrivalsky M, Chappart M (1993) Effectors for the osmoinduced proline response in higher plants. Plant Physiol Biochem 31:911–922

    CAS  Google Scholar 

  • Lasko PF, Brandriss MC (1981) Proline transport in Saccharomyces cerevisiae. J Bacteriol 148:241–247

    PubMed  CAS  Google Scholar 

  • Lee YH, Tegeder M (2004) Selective expression of a novel high-affinity transport system for acidic and neutral amino acids in the tapetum cells of Arabidopsis flowers. Plant J 40:60–74

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Foster J, Chen J, Voll LM, Weber APM, Tegeder M (2007) AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant J 50:305–319

    Article  PubMed  CAS  Google Scholar 

  • López-Carrión A, Castellano R, Rosales M, Ruiz J, Romero L (2008) Role of nitric oxide under saline stress: implications on proline metabolism. Biol Plant 52:587–591

    Article  Google Scholar 

  • Madan S, Nainawatee H, Jain S, Jain R, Malik M, Chowdhury J (1994) Leaf position-dependent changes in proline, pyrroline-5-carboxylate reductase activity and water relations under salt-stress in genetically stable salt-tolerant somaclones of Brassica juncea L. Plant Soil 163:151–156

    Article  CAS  Google Scholar 

  • Mani S, Van de Cotte B, Van Montagu M, Verbruggen N (2002) Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol 128:73–83

    Article  PubMed  CAS  Google Scholar 

  • Martínez C, Pons E, Prats G, León J (2004) Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37:209–217

    PubMed  Google Scholar 

  • Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314

    Article  PubMed  CAS  Google Scholar 

  • Matskevitch I, Wagner CA, Stegen C, Bröer S, Noll B, Risler T, Kwon HM, Handler JS, Waldegger S, Busch AE, Lang F (1999) Functional characterization of the betaine/γ-aminobutyric acid transporter BGT-1 expressed in Xenopus oocytes. J Biol Chem 274:16709–16716

    Article  PubMed  CAS  Google Scholar 

  • Mattioli R, Marchese D, D’Angeli S, Altamura M, Costantino P, Trovato M (2008) Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol Biol 66:277–288

    Article  PubMed  CAS  Google Scholar 

  • Mattioli R, Costantino P, Trovato M (2009a) Proline accumulation in plants: not only stress. Plant Signal Behav 4:1016–1018

    Article  PubMed  CAS  Google Scholar 

  • Mattioli R, Falasca G, Sabatini S, Altamura MM, Costantino P, Trovato M (2009b) The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiol Plant 137:72–85

    Article  CAS  Google Scholar 

  • Mauro ML, Trovato M, Paolis AD, Gallelli A, Costantino P, Altamura MM (1996) The plant oncogene rolD stimulates flowering in transgenic tobacco plants. Dev Biol 180:693–700

    Article  PubMed  CAS  Google Scholar 

  • Meinke D, Muralla R, Sweeney C, Dickerman A (2008) Identifying essential genes in Arabidopsis thaliana. Trends Plant Sci 13:483–491

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A (2009) Unraveling Δ1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492

    Article  PubMed  CAS  Google Scholar 

  • Misra N, Saxena P (2009) Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci 177:181–189

    Article  CAS  Google Scholar 

  • Mitchell HJ, Ayliffe MA, Rashid KY, Pryor AJ (2006) A rust-inducible gene from flax (fis1) is involved in proline catabolism. Planta 223:213–222

    Article  PubMed  CAS  Google Scholar 

  • Mitsubuchi H, Nakamura K, Matsumoto S, Endo F (2008) Inborn errors of proline metabolism. J Nutr 138:2016S–2020S

    PubMed  CAS  Google Scholar 

  • Morbach S, Krämer R (2002) Body shaping under water stress: osmosensing and osmoregulation of solute transport in Bacteria. ChemBioChem 3:384–397

    Article  PubMed  CAS  Google Scholar 

  • Murahama M, Yoshida T, Hayashi F, Ichino T, Sanada Y, Wada K (2001) Purification and characterization of Δ1-pyrroline-5-carboxylate reductase isoenzymes indicating differential distribution in spinach (Spinacia oleracea L.) leaves. Plant Cell Physiol 42:742–750

    Article  PubMed  CAS  Google Scholar 

  • Mutters RG, Ferreira LGR, Hall AE (1989) Proline content of the anthers and pollen of heat-tolerant and heat-sensitive cowpea subjected to different temperatures. Crop Sci 29:1497–1500

    Article  CAS  Google Scholar 

  • Nakashima K, Satoh R, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. Plant Physiol 118:1233–1241

    Article  PubMed  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinosaki K (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J 18:185–193

    Article  PubMed  CAS  Google Scholar 

  • Nanjo T, Fujita M, Seki M, Kato T, Tabata S, Shinozaki K (2003) Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol 44:541–548

    Article  PubMed  CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    Article  PubMed  CAS  Google Scholar 

  • Nepi M, von Aderkas P, Wagner R, Mugnaini S, Coulter A, Pacini E (2009) Nectar and pollination drops: how different are they? Ann Bot 104:205–219

    Article  PubMed  CAS  Google Scholar 

  • Okumoto S, Schmidt R, Tegeder M, Fischer WN, Rentsch D, Frommer WB, Koch W (2002) High affinity amino acid transporters specifically expressed in xylem parenchyma and developing seeds of Arabidopsis. J Biol Chem 277:45338–45346

    Article  PubMed  CAS  Google Scholar 

  • Okumoto S, Koch W, Tegeder M, Fischer WN, Biehl A, Leister D, Stierhof YD, Frommer WB (2004) Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3. J Exp Bot 55:2155–2168

    Article  PubMed  CAS  Google Scholar 

  • Ötztürk L, Demir Y (2002) In vivo and in vitro protective role of proline. Plant Growth Regul 38:259–264

    Article  Google Scholar 

  • Pancheva TV, Popova LP, Uzunova AN (1996) Effects of salicylic acid on growth and photosynthesis in barley plants. J Plant Physiol 149:57–63

    CAS  Google Scholar 

  • Peng Z, Lu Q, Verma DPS (1996) Reciprocal regulation of Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Genet 253:334–341

    PubMed  CAS  Google Scholar 

  • Pesci P (1993) Glucose mimics the enhancing effect of light on ABA-induced proline accumulation in hydrated barley and wheat leaves. J Plant Physiol 142:355–359

    CAS  Google Scholar 

  • Phang J, Donald S, Pandhare J, Liu Y (2008) The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 35:681–690

    Article  PubMed  CAS  Google Scholar 

  • Picault N, Hodges M, Palmieri L, Palmieri F (2004) The growing family of mitochondrial carriers in Arabidopsis. Trends Plant Sci 9:138–146

    Article  PubMed  CAS  Google Scholar 

  • Ramesh V, Gusella JF, Shih VE (1991) Molecular pathology of gyrate atrophy of the choroid and retina due to ornithine aminotransferase deficiency. Mol Biol Med 8:81–93

    PubMed  CAS  Google Scholar 

  • Raymond MJ, Smirnoff N (2002) Proline metabolism and transport in maize seedlings at low water potential. Ann Bot 89:813–823

    Article  PubMed  CAS  Google Scholar 

  • Regenberg B, Düring-Olsen L, Kielland-Brandt MC, Holmberg S (1999) Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36:317–328

    Article  PubMed  CAS  Google Scholar 

  • Rentsch D, Hirner B, Schmelzer E, Frommer WB (1996) Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8:1437–1446

    Article  PubMed  CAS  Google Scholar 

  • Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289

    Article  PubMed  CAS  Google Scholar 

  • Reversade B, Escande-Beillard N, Dimopoulou A et al (2009) Mutations in PYCR1 cause cutis laxa with progeroid features. Nat Genet 41:1016–1021

    Article  PubMed  CAS  Google Scholar 

  • Ribarits A, Abdullaev A, Tashpulatov A, Richter A, Heberle-Bors E, Touraev A (2007) Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. Planta 225:1313–1324

    Article  PubMed  CAS  Google Scholar 

  • Roeßler M, Müller V (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 3:743–754

    Article  Google Scholar 

  • Rolletschek H, Hosein F, Miranda M, Heim U, Gotz KP, Schlereth A, Borisjuk L, Saalbach I, Wobus U, Weber H (2005) Ectopic expression of an amino acid transporter (VfAAP1) in seeds of Vicia narbonensis and pea increases storage proteins. Plant Physiol 137:1236–1249

    Article  PubMed  CAS  Google Scholar 

  • Rook F, Gerrits N, Kortstee A, van Kampen M, Borrias M, Weisbeek P, Smeekens S (1998) Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J 15:253–263

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  PubMed  CAS  Google Scholar 

  • Sanada Y, Ueda H, Kuribayashi K, Andoh T, Hayashi F, Tamai N, Wada K (1995) Novel light-dark change of proline levels in halophyte (Mesembryanthemum crystallinum L.) and glycophytes (Hordeum vulgare L. and Triticum aestivum L.) leaves and roots under salt stress. Plant Cell Physiol 36:965–970

    CAS  Google Scholar 

  • Sánchez E, López-Lefebre LR, García PC, Rivero RM, Ruiz JM, Romero L (2001) Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv. Strike). J Plant Physiol 158:593–598

    Article  Google Scholar 

  • Sánchez E, García PC, López-Lefebre LR, Rivero RM, Ruiz JM, Romero L (2002) Proline metabolism in response to nitrogen deficiency in French Bean plants (Phaseolus vulgaris L. cv Strike). Plant Growth Regul 36:261–265

    Article  Google Scholar 

  • Sanders A, Collier R, Trethewy A, Gould G, Sieker R, Tegeder M (2009) AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J 59:540–552

    Article  PubMed  CAS  Google Scholar 

  • Satoh R, Nakashima K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2002) ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiol 130:709–719

    Article  PubMed  CAS  Google Scholar 

  • Satoh R, Fujita Y, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2004) A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis. Plant Cell Physiol 45:309–317

    Article  PubMed  CAS  Google Scholar 

  • Savouré A, Hua XJ, Bertauche N, van Montagu M, Verbruggen N (1997) Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Mol Gen Genet 254:104–109

    Article  PubMed  Google Scholar 

  • Saxena S, Kaushik N, Sharma R (2008) Effect of abscisic acid and proline on in vitro flowering in Vigna aconitifolia. Biol Plant 52:181–183

    Article  CAS  Google Scholar 

  • Schmidt R, Stransky H, Koch W (2007) The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana. Planta 226:805–813

    Article  PubMed  CAS  Google Scholar 

  • Schwacke R, Grallath S, Breitkreuz KE, Stransky E, Stransky H, Frommer WB, Rentsch D (1999) LeProT1, a transporter for proline, glycine betaine, and γ-amino butyric acid in tomato pollen. Plant Cell 11:377–392

    Article  PubMed  CAS  Google Scholar 

  • Sekine T, Kawaguchi A, Hamano Y, Takagi H (2007) Desensitization of feedback inhibition of the Saccharomyces cerevisiae γ-glutamyl kinase enhances proline accumulation and freezing tolerance. Appl Environ Microbiol 73:4011–4019

    Article  PubMed  CAS  Google Scholar 

  • Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71

    Article  PubMed  CAS  Google Scholar 

  • Steber CM, McCourt P (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiol 125:763–769

    Article  PubMed  CAS  Google Scholar 

  • Stewart CR, Morris CJ, Thompson JF (1966) Changes in amino acid content of excised leaves during incubation. III. Role of sugar in the accumulation of proline in wilted leaves. Plant Physiol 41:1585–1590

    Article  PubMed  CAS  Google Scholar 

  • Stines AP, Naylor DJ, Høj PB, van Heeswijck R (1999) Proline accumulation in developing grapevine fruit occurs independently of changes in the levels of Δ1-pyrroline-5-carboxylate synthetase mRNA or protein. Plant Physiol 120:923–931

    Article  PubMed  CAS  Google Scholar 

  • Stránská J, Kopečný D, Tylichowá M, Snégaroff J, Šebela M (2008) Ornithine δ-aminotransferase: an enzyme implicated in salt tolerance in higher plants. Plant Signal Behav 3:929–935

    PubMed  Google Scholar 

  • Strizhov N, Ábrahám E, Ökrész L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    Article  PubMed  CAS  Google Scholar 

  • Su YH, Frommer WB, Ludewig U (2004) Molecular and functional characterization of a family of amino acid transporters from Arabidopsis. Plant Physiol 136:3104–3113

    Article  PubMed  CAS  Google Scholar 

  • Svennerstam H, Ganeteg U, Bellini C, Näsholm T (2007) Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143:1853–1860

    Article  PubMed  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Google Scholar 

  • Székely G, Ábrahám E, Cséplő Á, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  PubMed  CAS  Google Scholar 

  • Tanner J (2008) Structural biology of proline catabolism. Amino Acids 35:719–730

    Article  PubMed  CAS  Google Scholar 

  • Tomenchok DM, Brandriss MC (1987) Gene–enzyme relationships in the proline biosynthetic pathway of Saccharomyces cerevisiae. J Bacteriol 169:5364–5372

    PubMed  CAS  Google Scholar 

  • Trovato M, Maras B, Linhares F, Costantino P (2001) The plant oncogene rolD encodes a functional ornithine cyclodeaminase. Proc Natl Acad Sci 98:13449–13453

    Article  PubMed  CAS  Google Scholar 

  • Tully RE, Hanson AD, Nelsen CE (1979) Proline accumulation in water-stressed barley leaves in relation to translocation and the nitrogen budget. Plant Physiol 63:518–523

    Article  PubMed  CAS  Google Scholar 

  • Turchetto-Zolet A, Margis-Pinheiro M, Margis R (2009) The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Mol Genet Genomics 281:87–97

    Article  PubMed  CAS  Google Scholar 

  • Ueda A, Shi W, Sanmiya K, Shono M, Takabe T (2001) Functional analysis of salt-inducible proline transporter of barley roots. Plant Cell Physiol 42:1282–1289

    Article  PubMed  CAS  Google Scholar 

  • Ueda A, Yamamoto-Yamane Y, Takabe T (2007) Salt stress enhances proline utilization in the apical region of barley roots. Biochem Biophys Res Commun 355:61–66

    Article  PubMed  CAS  Google Scholar 

  • Ueda A, Shi W, Shimada T, Miyake H, Takabe T (2008) Altered expression of barley proline transporter causes different growth responses in Arabidopsis. Planta 227:277–286

    Article  PubMed  CAS  Google Scholar 

  • Venekamp JH, Koot JTM (1984) The distribution of free amino acids, especially of proline, in the organs of field bean plants. Vicia faba L., during development in the field. J Plant Physiol 116:343–349

    CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Villarroel R, Van Montagu M (1993) Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol 103:771–781

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Hua XJ, May M, Van Montagu M (1996) Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator. Proc Natl Acad Sci 93:8787–8791

    Article  PubMed  CAS  Google Scholar 

  • Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57:201–212

    Article  PubMed  CAS  Google Scholar 

  • Verslues PE, Sharp RE (1999) Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. II. Metabolic source of increased proline deposition in the elongation zone. Plant Physiol 119:1349–1360

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Hayakawa S, Suzuki S, Futsuhara Y, Kawamitsu Y, Takabe T, Takabe T (2002) Functional characterization of betaine/proline transporters in betaine-accumulating mangrove. J Biol Chem 277:18373–18382

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    Article  PubMed  CAS  Google Scholar 

  • Weibull J, Ronquist F, Brishammar S (1990) Free amino acid composition of leaf exudates and phloem sap: a comparative study in oats and barley. Plant Physiol 92:222–226

    Article  PubMed  CAS  Google Scholar 

  • Weigelt K, Küster H, Radchuk R, Müller M, Weichert H, Fait A, Fernie AR, Saalbach I, Weber H (2008) Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism. Plant J 55:909–926

    Article  PubMed  CAS  Google Scholar 

  • Weltmeier F, Ehlert A, Mayer CS, Dietrich K, Wang X, Schütze K, Alonso R, Harter K, Vicente-Carbajosa J, Dröge-Laser W (2006) Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO 25:3133–3143

    Article  CAS  Google Scholar 

  • Williamson CL, Slocum RD (1992) Molecular cloning and evidence for osmoregulation of the Δ1-pyrroline-5-carboxylate reductase (proC) gene in pea (Pisum sativum L.). Plant Physiol 100:1464–1470

    Article  PubMed  CAS  Google Scholar 

  • Wood JM (2006) Osmosensing by bacteria. Sci STKE 357:pe43

    Article  Google Scholar 

  • Wood JM, Bremer E, Csonka LN, Kraemer R, Poolman B, van der Heide T, Smith LT (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A Mol Integr Physiol 130:437–460

    Article  PubMed  CAS  Google Scholar 

  • Yang SL, Lan SS, Gong M (2009) Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol 166:1694–1699

    Article  PubMed  CAS  Google Scholar 

  • Yoon KA, Nakamura Y, Arakawa H (2004) Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J Hum Genet 49:134–140

    Article  PubMed  CAS  Google Scholar 

  • Yusuf M, Syed Aiman H, Barket A, Shamsul H, Qazi F, Aqil A (2008) Effect of salicylic acid on salinity-induced changes in Brassica juncea. J Integr Plant Biol 50:1096–1102

    Article  PubMed  CAS  Google Scholar 

  • Zhang HQ, Croes AF (1983) Proline metabolism in pollen: degradation of proline during germination and early tube growth. Planta 159:46–49

    Article  CAS  Google Scholar 

  • Zhang LP, Mehta SK, Liu ZP, Yang ZM (2008) Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol 49:411–419

    Article  PubMed  CAS  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Zhu W, Bellur PS, Rewinkel D, Becker DF (2008) Direct linking of metabolism and gene expression in the proline utilization A protein from Escherichia coli. Amino Acids 35:711–718

    Article  PubMed  CAS  Google Scholar 

  • Zúñiga G, Argandoña VH, Corcuera LJ (1989) Distribution of glycine-betaine and proline in water stressed and unstressed barley leaves. Phytochemistry 28:419–420

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Swiss National Foundation (Grant no. 3100A0-107507), the University of Bern (Switzerland), the University of Konstanz (Germany) and Hungarian Scientific Research Fund (Grant no. K-68226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Rentsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, S., Funck, D., Szabados, L. et al. Proline metabolism and transport in plant development. Amino Acids 39, 949–962 (2010). https://doi.org/10.1007/s00726-010-0525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0525-3

Keywords

Navigation