Skip to main content
Log in

Cupiennin 1a exhibits a remarkably broad, non-stereospecific cytolytic activity on bacteria, protozoan parasites, insects, and human cancer cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Cupiennin 1a, a cytolytic peptide isolated from the venom of the spider Cupiennius salei, exhibits broad membranolytic activity towards bacteria, trypanosomes, and plasmodia, as well as human blood and cancer cells. In analysing the cytolytic activity of synthesised all-d- and all-l-cupiennin 1a towards pro- and eukaryotic cells, a stereospecific mode of membrane destruction could be excluded. The importance of negatively charged sialic acids on the outer leaflet of erythrocytes for the binding and haemolytic activity of l-cupiennin 1a was demonstrated. Reducing the overall negative charges of erythrocytes by partially removing their sialic acids or by protecting them with tri- or pentalysine results in reduced haemolytic activity of the peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez-Bravo J, Kurata S, Natori S (1994) Novel synthetic antimicrobial peptides effective against methicillin-resistant Staphylococcus aureus. Biochem J 302:535–538

    CAS  PubMed  Google Scholar 

  • Bergmeyer H, Bernt E (1974) Lactate dehydrogenase: UV assay with pyruvate and NADH. In: Bergmeyer H (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim, pp 574–579

    Google Scholar 

  • Bessalle R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M (1990) All-d-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett 274:151–155

    Article  CAS  PubMed  Google Scholar 

  • Boulanger N, Brun R, Ehret-Sabatier L, Kunz C, Bulet P (2002) Immunopeptides in the defense reactions of Glossina morsitans to bacterial and Trypanosoma brucei brucei infections. Insect Biochem Mol Biol 32:369–375

    Article  CAS  PubMed  Google Scholar 

  • Carroll M, McCrorie P (1986) Lipid composition of bloodstream forms of Trypanosoma brucei brucei. Comp Biochem Physiol B 83:647–651

    Article  CAS  PubMed  Google Scholar 

  • De Bank PA, Kellam B, Kendall DA, Shakesheff KM (2003) Surface engineering of living myoblasts via selective periodate oxidation. Biotechnol Bioeng 81:800–808

    Article  PubMed  Google Scholar 

  • Dennison SR, Whittaker M, Harris F, Phoenix DA (2006) Anticancer alpha-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr Protein Pept Sci 7:487–499

    Article  CAS  PubMed  Google Scholar 

  • Ganapaty S, Steve Thomas P, Karagianis G, Waterman PG, Brun R (2006) Antiprotozoal and cytotoxic naphthalene derivatives from Diospyros assimilis. Phytochemistry 67:1950–1956

    Article  CAS  PubMed  Google Scholar 

  • Henning R, Lange-Mutschler J (1983) Tightly associated lipids may anchor SV40 large T antigen in plasma membrane. Nature 305:736–738

    Article  CAS  PubMed  Google Scholar 

  • Hesse F, Selzer P, Mühlstadt K, Duszenko M (1995) A novel cultivation technique for long-term maintenance of bloodstream form trypanosomes in vitro. Mol Biochem Parasitol 70:157–166

    Article  CAS  PubMed  Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Park Y, Sung WS, Suh BK, Lee J, Hahm KS, Lee DG (2007) Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim Biophys Acta 1768:1400–1405

    Article  CAS  PubMed  Google Scholar 

  • Kitani H, Naessens J, Kubo M, Nakamura Y, Iraqi F, Gibson J, Yamakawa M (2009) Synthetic nonamer peptides derived from insect defensin mediate the killing of African trypanosomes in axenic culture. Parasitol Res 105:217–225

    Article  PubMed  Google Scholar 

  • Kozlov SA, Vassilevski AA, Feofanov AV, Surovoy AY, Karpunin DV, Grishin EV (2006) Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J Biol Chem 281:20983–20992

    Article  CAS  PubMed  Google Scholar 

  • Kramerova IA, Kawaguchi N, Fessler LI, Nelson RE, Chen YL, Kramerov AA, Kusche-Gullberg M, Kramer JM, Ackley BD, Sieron AL, Prockop DJ, Fessler JH (2000) Papilin in development; a pericellular protein with a homology to the Adamts metalloproteinases. Development 127:5475–5485

    CAS  PubMed  Google Scholar 

  • Kuhn-Nentwig L (2003) Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci 60:2651–2668

    Article  CAS  PubMed  Google Scholar 

  • Kuhn-Nentwig L, Schaller J, Kämpfer U, Imboden H, Malli H, Nentwig W (2000) A lysine rich C-terminal tail is directly involved in the toxicity of CSTX-1, a neurotoxic peptide from the venom of the spider Cupiennius salei. Arch Insect Biochem Physiol 44:101–111

    Article  CAS  PubMed  Google Scholar 

  • Kuhn-Nentwig L, Dathe M, Walz A, Schaller J, Nentwig W (2002a) Cupiennin 1d*: the cytolytic activity depends on the hydrophobic N-terminus and is modulated by the polar C-terminus. FEBS Lett 527:193–198

    Article  CAS  PubMed  Google Scholar 

  • Kuhn-Nentwig L, Müller J, Schaller J, Walz A, Dathe M, Nentwig W (2002b) Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae). J Biol Chem 277:11208–11216

    Article  CAS  PubMed  Google Scholar 

  • Kuhn-Nentwig L, Schaller J, Nentwig W (2004) Biochemistry, toxicology and ecology of the venom of the spider Cupiennius salei (Ctenidae). Toxicon 43:543–553

    Article  CAS  PubMed  Google Scholar 

  • Li ML, Liao RW, Qiu JW, Wang ZJ, Wu TM (2000) Antimicrobial activity of synthetic all-d mastoparan M. Int J Antimicrob Agents 13:203–208

    Article  CAS  PubMed  Google Scholar 

  • Löfgren SE, Miletti LC, Steindel M, Bachère E, Barracco MA (2008) Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals. Exp Parasitol 118:197–202

    Article  PubMed  Google Scholar 

  • Lohner K (2001) The role of membrane lipid composition in cell targeting of antimicrobial peptides. In: Lohner K (ed) Development of novel antimicrobial agents: emerging strategies. Horizon Scientific Press, Wymondham, pp 149–165

    Google Scholar 

  • Mäntylä T, Sirola H, Kansanen E, Korjamo T, Lankinen H, Lappalainen K, Valimaa AL, Harvima I, Narvanen A (2005) Effect of temporin A modifications on its cytotoxicity and antimicrobial activity. APMIS 113:497–505

    Article  PubMed  Google Scholar 

  • Márquez M, Nilsson S, Lennartsson L, Liu Z, Tammela T, Raitanen M, Holmberg AR (2004) Charge-dependent targeting: results in six tumor cell lines. Anticancer Res 24:1347–1351

    PubMed  Google Scholar 

  • McGwire BS, Olson CL, Tack BF, Engman DM (2003) Killing of African trypanosomes by antimicrobial peptides. J Infect Dis 188:146–152

    Article  PubMed  Google Scholar 

  • Mehlert A, Richardson JM, Ferguson MA (1998) Structure of the glycosylphosphatidylinositol membrane anchor glycan of a class-2 variant surface glycoprotein from Trypanosoma brucei. J Mol Biol 277:379–392

    Article  CAS  PubMed  Google Scholar 

  • Mehlert A, Bond CS, Ferguson MA (2002) The glycoforms of a Trypanosoma brucei variant surface glycoprotein and molecular modeling of a glycosylated surface coat. Glycobiology 12:607–612

    Article  CAS  PubMed  Google Scholar 

  • Olson PF, Fessler LI, Nelson RE, Sterne RE, Campbell AG, Fessler JH (1990) Glutactin, a novel Drosophila basement membrane-related glycoprotein with sequence similarity to serine esterases. EMBO J 9:1219–1227

    CAS  PubMed  Google Scholar 

  • Patnaik PK, Field MC, Menon AK, Cross GA, Yee MC, Bütikofer P (1993) Molecular species analysis of phospholipids from Trypanosoma brucei bloodstream and procyclic forms. Mol Biochem Parasitol 58:97–105

    Article  CAS  PubMed  Google Scholar 

  • Podda E, Benincasa M, Pacor S, Micali F, Mattiuzzo M, Gennaro R, Scocchi M (2006) Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim Biophys Acta 1760:1732–1740

    CAS  PubMed  Google Scholar 

  • Pukala TL, Boland MP, Gehman JD, Kuhn-Nentwig L, Separovic F, Bowie JH (2007a) Solution structure and interaction of cupiennin 1a, a spider venom peptide, with phospholipid bilayers. Biochemistry 46:3576–3585

    Article  CAS  PubMed  Google Scholar 

  • Pukala TL, Doyle JR, Llewellyn LE, Kuhn-Nentwig L, Apponyi MA, Separovic F, Bowie JH (2007b) Cupiennin1a, an antimicrobial peptide from the venom of the neotropical wandering spider Cupiennius salei, also inhibits the formation of nitric oxide by neuronal nitric oxide synthase. FEBS J 274:1778–1784

    Article  CAS  PubMed  Google Scholar 

  • Räz B, Iten M, Grether-Buhler Y, Kaminsky R, Brun R (1997) The Alamar Blue(R) assay to determine drug sensitivity of African trypanosomes (T. b. rhodesiense and T. b. gambiense) in vitro. Acta Trop 68:139–147

    Article  PubMed  Google Scholar 

  • Reuter G, Schauer R (1994) Determination of sialic acids. In: Lennarz J, Hart G (eds) Methods in enzymology. Guide to techniques in glycobiology. Academic Press, London New York, pp 168–199

    Chapter  Google Scholar 

  • Ruben L, Akins CD, Haghighat NG, Xue L (1996) Calcium influx in Trypanosoma brucei can be induced by amphiphilic peptides and amines. Mol Biochem Parasitol 81:191–200

    Article  CAS  PubMed  Google Scholar 

  • Sickmann T, Weske B, Dennis RD, Mohr C, Wiegandt H (1992) Chemical distribution of glycosphingolipids in third-instar larval organs of the blowfly, Calliphora vicina (Insecta: Diptera). J Biochem 111:662–669

    CAS  PubMed  Google Scholar 

  • Thevissen K, Francois IE, Sijtsma L, van Amerongen A, Schaaper WM, Meloen R, Posthuma-Trumpie T, Broekaert WF, Cammue BP (2005) Antifungal activity of synthetic peptides derived from Impatiens balsamina antimicrobial peptides Ib-AMP1 and Ib-AMP4. Peptides 26:1113–1119

    Article  CAS  PubMed  Google Scholar 

  • Verkleij AJ, Zwaal RF, Roelofsen B, Comfurius P, Kastelijn D, van Deenen LL (1973) The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta 323:178–193

    Article  CAS  PubMed  Google Scholar 

  • Viitala J, Järnefelt J (1985) The red cell surface revisited. TIBS 10:392–395

    CAS  Google Scholar 

  • Voorheis HP, Gale JS, Owen MJ, Edwards W (1979) The isolation and partial characterization of the plasma membrane from Trypanosoma brucei. Biochem J 180:11–24

    CAS  PubMed  Google Scholar 

  • Vunnam S, Juvvadi P, Rotondi KS, Merrifield RB (1998) Synthesis and study of normal, enantio, retro, and retroenantio isomers of cecropin A–melittin hybrids, their end group effects and selective enzyme inactivation. J Pept Res 51:38–44

    Article  CAS  PubMed  Google Scholar 

  • Wade D, Boman A, Wahlin B, Drain CM, Andreu D, Boman HG, Merrifield RB (1990) All-d amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci USA 87:4761–4765

    Article  CAS  PubMed  Google Scholar 

  • Wade D, Silberring J, Soliymani R, Heikkinen S, Kilpelainen I, Lankinen H, Kuusela P (2000) Antibacterial activities of temporin A analogs. FEBS Lett 479:6–9

    Article  CAS  PubMed  Google Scholar 

  • Walser A, Rinke Y, Deppert W (1989) Only a minor fraction of plasma membrane-associated large T antigen in simian virus 40-transformed mouse tumor cells (mKSA) is exposed on the cell surface. J Virol 63:3926–3933

    CAS  PubMed  Google Scholar 

  • Willems J, Noppe W, Moerman L, van der Walt J, Verdonck F (2002) Cationic peptides from scorpion venom can stimulate and inhibit polymorphonuclear granulocytes. Toxicon 40:1679–1683

    Article  CAS  PubMed  Google Scholar 

  • Willems J, Moerman L, Bosteels S, Bruyneel E, Ryniers F, Verdonck F (2004) Parabutoporin—an antibiotic peptide from scorpion venom—can both induce activation and inhibition of granulocyte cell functions. Peptides 25:1079–1084

    Article  CAS  PubMed  Google Scholar 

  • Wu MH, Hancock REW (1999) Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. J Biol Chem 274:29–35

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger B, Kuhn-Nentwig L, Tromp J, Kämpfer U, Schaller J, Schürch S, Nentwig W (2004) CSTX-13, a highly synergistically acting two-chain neurotoxic enhancer in the venom of the spider Cupiennius salei (Ctenidae). Proc Natl Acad Sci USA 101:11251–11256

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger B, Nentwig W, Kuhn-Nentwig L (2005) Spider venom: enhancement of venom efficacy mediated by different synergistic strategies in Cupiennius salei. J Exp Biol 208:2115–2121

    Article  CAS  PubMed  Google Scholar 

  • Yamage M, Yoshiyama M, Grab DJ, Kubo M, Iwasaki T, Kitani H, Ishibashi J, Yamakawa M (2009) Characteristics of novel insect defensin-based membrane-disrupting trypanocidal peptides. Biosci Biotechnol Biochem 73:1520–1526

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Heather Murray for critical comments on the manuscript, and the Swiss National Science Foundation for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Kuhn-Nentwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn-Nentwig, L., Willems, J., Seebeck, T. et al. Cupiennin 1a exhibits a remarkably broad, non-stereospecific cytolytic activity on bacteria, protozoan parasites, insects, and human cancer cells. Amino Acids 40, 69–76 (2011). https://doi.org/10.1007/s00726-009-0471-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0471-0

Keywords

Navigation