Skip to main content
Log in

Thermodynamics of binding of regulatory ligands to tissue transglutaminase

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The transamidating activity of tissue transglutaminase is regulated by the ligands calcium and GTP, via conformational changes which facilitate or interfere with interaction with the peptidyl-glutamine substrate. We have analysed binding of these ligands by calorimetric and computational approaches. In the case of GTP we have detected a single high affinity site (K D ≈ 1 μM), with moderate thermal effects suggestive that binding GTP involves replacement of GDP, normally bound to the protein. On line with this possibility no significant binding was observed during titration with GDP and computational studies support this view. Titration with calcium at a high cation molar excess yielded a complex binding isotherm with a number of “apparent binding sites” in large excess over those detectable by equilibrium dialysis (6 sites). This binding pattern is ascribed to occurrence of additional thermal contributions, beyond those of binding, due to the occurrence of conformational changes and to catalysis itself (with protein self-crosslinking). In contrast only one site for binding calcium with high affinity (K D ≈ 0.15 μM) is observed with samples of enzyme inactivated by alkylation at the active site (to prevent enzyme crosslinkage and thermal effects of catalysis). These results indicate an intrinsic ability of tissue transglutaminase to bind calcium with high affinity and the necessity of careful reassessment of the enzyme regulatory pattern in relation to the concentrations of ligands in living cells, taking also in account effects of ligands on protein subcellular compartimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahvazi B, Kim HC, Kee SH, Nemes Z, Steinert PM (2002) Three-dimensional structure of the human transglutaminase 3 enzyme: binding of calcium ions changes structure for activation. EMBO J 21:2055–2067

    Article  CAS  PubMed  Google Scholar 

  • Begg GE, Carrington L, Stokes PH, Matthews JM, Wouters MA, Husain A, Lorand L, Iismaa SE, Graham RM (2006a) Mechanism of allosteric regulation of transglutaminase 2 by GTP. Proc Natl Acad Sci USA 103:19683–19688

    Article  CAS  PubMed  Google Scholar 

  • Begg GE, Holman SR, Stokes PH, Matthews JM, Graham RM, Iismaa SE (2006b) Mutation of a critical arginine in the GTP-binding site of transglutaminase 2 disinhibits intracellular cross-linking activity. J Biol Chem 281:12603–12609

    Article  CAS  PubMed  Google Scholar 

  • Bergamini CM (1988) GTP modulates calcium binding and cation-induced conformational changes in erythrocyte transglutaminase. FEBS Lett 239:255–258

    Article  CAS  PubMed  Google Scholar 

  • Bergamini CM (2007) Effects of ligands on the stability of tissue transglutaminase: studies in vitro suggest possible modulation by ligands of protein turn-over in vivo. Amino Acids 33:415–421

    Article  CAS  PubMed  Google Scholar 

  • Bergamini CM, Signorini M (1992) Purification of testicular transglutaminase by hydrophobic chromatography on phenyl-sepharose. Biochem Int 27:557–565

    CAS  PubMed  Google Scholar 

  • Bergamini CM, Signorini M (1993) Studies on tissue transglutaminases: interaction of erythrocyte type-2 transglutaminase with GTP. Biochem J 291:37–39

    CAS  PubMed  Google Scholar 

  • Bergamini CM, Griffin M, Pansini FS (2005) Transglutaminase and vascular biology: physiopathologic implications and perspectives for therapeutic interventions. Curr Med Chem 12:2357–2372

    Article  CAS  PubMed  Google Scholar 

  • Candi E, Paradisi A, Terrinoni A, Pietroni V, Oddi S, Cadot B, Jogini V, Meiyappan M, Clardy J, Finazzi-Agro A, Melino G (2004) Transglutaminase 5 is regulated by guanine–adenine nucleotides. Biochem J 381:313–319

    Article  CAS  PubMed  Google Scholar 

  • Casadio R, Polverini E, Mariani P, Spinozzi F, Carsughi F, Fontana A, Polverino de Laureto P, Matteucci G, Bergamini CM (1999) The structural basis for the regulation of tissue transglutaminase by calcium ions. Eur J Biochem 262:672–679

    Article  CAS  PubMed  Google Scholar 

  • Chatziantoniou C, Dussaule JC (2005) Insights into the mechanisms of renal fibrosis: is it possible to achieve regression? Am J Physiol Renal Physiol 289:F227–F234

    Article  CAS  PubMed  Google Scholar 

  • Fesus L, Szondy Z (2005) Transglutaminase 2 in the balance of cell death and survival. FEBS Lett 579:3297–3302

    Article  PubMed  Google Scholar 

  • Freund KF, Doshi KP, Gaul SL, Claremon DA, Remy DC, Baldwin JJ, Pitzenberger SM, Stern AM (1994) Transglutaminase inhibition by 2-[(2-oxopropyl)thio]-imidazolium derivatives: mechanism of factor XIIIa inactivation. Biochemistry 33:10109–10119

    Article  CAS  PubMed  Google Scholar 

  • Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    Article  CAS  PubMed  Google Scholar 

  • Iismaa SE, Wu MJ, Nanda N, Church WB, Graham RM (2000) GTP binding and signaling by Gh/transglutaminase II involves distinct residues in a unique GTP-binding pocket. J Biol Chem 275:18259–18365

    Article  CAS  PubMed  Google Scholar 

  • Iismaa SE, Holman S, Wouters MA, Lorand L, Graham RM, Husain A (2003) Evolutionary specialization of a tryptophan indole group for transition-state stabilization by eukaryotic transglutaminases. Proc Natl Acad Sci USA 100:12541–12636

    Article  Google Scholar 

  • Johnson TS, El-Koraie AF, Skill NJ, Baddour NM, El Nahas AM, Njloma M, Adam AG, Griffin M (2003) Tissue transglutaminase and the progression of human renal scarring. J Am Soc Nephrol 14:2052–2062

    Article  CAS  PubMed  Google Scholar 

  • Johnson TS, Fisher M, Haylor JL, Hau Z, Skill NJ, Jones R, Saint R, Coutts I, Vickers ME, El Nahas AM, Griffin M (2007) Transglutaminase inhibition reduces fibrosis and preserves function in experimental chronic kidney disease. J Am Soc Nephrol 18:3078–3088

    Article  CAS  PubMed  Google Scholar 

  • Koning F, Schuppan D, Cerf-Bensussan N, Sollid LM (2005) Pathomechanisms in celiac disease. Best Pract Res Clin Gastroenterol 19:373–387

    Article  CAS  PubMed  Google Scholar 

  • Lai TS, Bielawska A, Peoples KA, Hannun YA, Greenberg CS (1997) Sphingosylphosphocholine reduces the calcium ion requirement for activating tissue transglutaminase. J Biol Chem 272:16295–16300

    Article  CAS  PubMed  Google Scholar 

  • Lai TS, Hausladen A, Slaughter TF, Eu JP, Stamler JS, Greenberg CS (2001) Calcium regulates S-nitrosylation, denitrosylation, and activity of tissue transglutaminase. Biochemistry 40:4904–4910

    Article  CAS  PubMed  Google Scholar 

  • Lai TS, Liu Y, Tucker T, Daniel KR, Sane DC, Toone E, Burke JR, Strittmatter WJ, Greenberg CS (2008) Identification of chemical inhibitors to human tissue transglutaminase by screening existing drug libraries. Chem Biol 15:969–978

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Cerione RA, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 99:2743–2747

    Article  CAS  PubMed  Google Scholar 

  • Mangala LS, Mehta K (2005) Tissue transglutaminase (TG2) in cancer biology. Prog Exp Tumor Res 38:125–138

    Article  CAS  PubMed  Google Scholar 

  • Mariani P, Carsughi F, Spinozzi F, Romanzetti S, Meier G, Casadio R, Bergamini CM (2000) Ligand-induced conformational changes in tissue transglutaminase: Monte Carlo analysis of small-angle scattering data. Biophys J 78:3240–3251

    Article  CAS  PubMed  Google Scholar 

  • Mian S, el Alaoui S, Lawry J, Gentile V, Davies PJ, Griffin M (1995) The importance of the GTP-binding protein tissue transglutaminase in the regulation of cell cycle progression. FEBS Lett 370:27–31

    Article  CAS  PubMed  Google Scholar 

  • Milakovic T, Tucholski J, McCoy E, Johnson GV (2004) Intracellular localization and activity state of tissue transglutaminase differentially impacts cell death. J Biol Chem 279:8715–8722

    Article  CAS  PubMed  Google Scholar 

  • Mitkevich OV, Shainoff JR, DiBello PM, Yee VC, Teller DC, Smejkal GB, Bishop PD, Kolotushkina IS, Fickenscher K, Samokhin GP (1998) Coagulation factor XIIIa undergoes a conformational change evoked by glutamine substrate. Studies on kinetics of inhibition and binding of XIIIA by a cross-reacting antifibrinogen antibody. J Biol Chem 273:14387–14391

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated Docking using a Lamarckian Genetic Algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  • Murthy SN, Lorand L (2000) Nucleotide binding by the erythrocyte transglutaminase/Gh protein, probed with fluorescent analogs of GTP and GDP. Proc Natl Acad Sci USA 97:7744–7747

    Article  CAS  PubMed  Google Scholar 

  • Park H, Park ES, Lee HS, Yun HY, Kwon NS, Baek KJ (2001) Distinct characteristic of Gα (h) (transglutaminase II) by compartment: GTPase and transglutaminase activities. Biochem Biophys Res Comm 284:496–500

    Article  CAS  PubMed  Google Scholar 

  • Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5:e327

    Article  PubMed  Google Scholar 

  • Siegel M, Khosla C (2007) Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol Ther 115:232–245

    Article  CAS  PubMed  Google Scholar 

  • Smethurst PA, Griffin M (1996) Measurement of tissue transglutaminase activity in a permeabilized cell system: its regulation by Ca2+ and nucleotides. Biochem J 313:803–808

    CAS  PubMed  Google Scholar 

  • Sohn J, Kim TI, Yoon YH, Kim JY, Kim SY (2003) Novel transglutaminase inhibitors reverse the inflammation of allergic conjunctivitis. J Clin Invest 111:121–128

    CAS  PubMed  Google Scholar 

  • Velazquez Campoy A, Freire E (2005) ITC in the post-genomic era ? Priceless. Biophys Chem 115:115–124

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lesort M, Guttmann RP, Johnson GV (1998) Modulation of the in situ activity of tissue transglutaminase by calcium and GTP. J Biol Chem 273:2288–2295

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from University of Ferrara, from Banca Popolare Emilia Romagna and from Fondazione Cassa di Risparmio di Cento to CMB. Authors express their gratitude to Prof. Franco Dallocchio for help in deconvolution of calorimetric data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo M. Bergamini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergamini, C.M., Dondi, A., Lanzara, V. et al. Thermodynamics of binding of regulatory ligands to tissue transglutaminase. Amino Acids 39, 297–304 (2010). https://doi.org/10.1007/s00726-009-0442-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0442-5

Keywords

Navigation