Skip to main content
Log in

Synthetic polyamines: an overview of their multiple biological activities

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The binding of polyamines to a variety of receptors and other defined recognition sites has been widely reported. It is well-known that polyamines interact with aspartate, glutamate, and aromatic residues of a given receptor and/or enzyme mainly through the formation of ion bonds, since at physiological pH, protonation of amino groups is nearly complete. From this, the hypothesis arises that a polyamine may be a universal template able to recognize different receptor systems. This hypothesis suggests that both affinity and selectivity may be fine-tuned by inserting appropriate substituents onto the amine functions and by varying the methylene chain lengths between them on the polyamine backbone. In this paper, we detail several application of this design strategy aimed at discovering potent and selective polyamines able to bind neurotransmitter receptors and enzymes, such as muscarinic receptor subtypes, muscle-type nicotinic receptors and acethylcholinesterase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SAR:

Structure–activity relationship

4-DAMP:

4-diphenylacetoxy-N-methylpiperidine

nAChR:

Nicotinic receptor

PhTX-433:

Philanthotoxin-433

AD:

Alzheimer’s disease

Aβ:

β-amyloid

AChE:

Acetylcholinesterase

ACh:

Acetylcholine

PAS:

Peripheral anionic site

MTDL:

Multi-target-directed ligand

References

  • Andersen TF, Tikhonov DB, Bolcho U, Bolshakov K, Nelson JK, Pluteanu F, Mellor IR, Egebjerg J, Stromgaard K (2006) Uncompetitive antagonism of AMPA receptors: mechanistic insights from studies of polyamine toxin derivatives. J Med Chem 49(18):5414–5423

    Article  CAS  PubMed  Google Scholar 

  • Bachrach U (2005) Naturally occurring polyamines: interaction with macromolecules. Curr Protein Pept Sci 6(6):559–566

    Article  CAS  PubMed  Google Scholar 

  • Barlow RB, Kitchen R (1982) The actions of some esters of 4-hydroxyquinuclidine on guinea-pig ileum, atria and rat fundus strip. Br J Pharmacol 77(3):549–557

    CAS  PubMed  Google Scholar 

  • Bartolini M, Bertucci C, Cavrini V, Andrisano V (2003) Beta-amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol 65(3):407–416

    Article  CAS  PubMed  Google Scholar 

  • Benfey BG, Yong MS, Belleau B, Melchiorre C (1979) Cardiac muscarinic blocking and atropinic blocking effects of a tetramine disulfide and alpha-adrenoceptor blocking activity. Can J Physiol Pharmacol 57(1):41–47

    CAS  PubMed  Google Scholar 

  • Benfey BG, Belleau B, Brasili L, Giannella M, Melchiorre C (1980) Irreversible alpha adrenoceptor blocking effects and reversible muscarinic blocking and nicotinic blocking effects of tetramine disulfides on the heart. Can J Physiol Pharmacol 58(12):1477–1483

    CAS  PubMed  Google Scholar 

  • Bixel MG, Weise C, Bolognesi ML, Rosini M, Brierly MJ, Mellor IR, Usherwood PN, Melchiorre C, Hucho F (2001) Location of the polyamine binding site in the vestibule of the nicotinic acetylcholine receptor ion channel. J Biol Chem 276(9):6151–6160

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi ML, Bixel MG, Marucci G, Bartolini M, Krauss M, Angeli P, Antonello A, Rosini M, Tumiatti V, Hucho F, Melchiorre C (2002) Structure-activity relationships of methoctramine-related polyamines as muscular nicotinic receptor noncompetitive antagonists. 3. Effect of inserting the tetraamine backbone into a macrocyclic structure. J Med Chem 45(15):3286–3295

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi ML, Banzi R, Bartolini M, Cavalli A, Tarozzi A, Andrisano V, Minarini A, Rosini M, Tumiatti V, Bergamini C, Fato R, Lenaz G, Hrelia P, Cattaneo A, Recanatini M, Melchiorre C (2007) Novel class of quinone-bearing polyamines as multi-target-directed ligands to combat Alzheimer’s disease. J Med Chem 50(20):4882–4897

    Article  CAS  PubMed  Google Scholar 

  • Bonner TI (1989) The molecular basis of muscarinic receptor diversity. Trends Neurosc 12(4):148–151

    Article  CAS  Google Scholar 

  • Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6(5):373–390

    Article  CAS  PubMed  Google Scholar 

  • Casero RA, Woster PM (2009) Recent advances in the development of polyamine analogues as antitumor agents. J Med Chem 52(15):4551–4573

    Article  CAS  PubMed  Google Scholar 

  • Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C (2008) Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 51(3):347–372

    Article  CAS  PubMed  Google Scholar 

  • Eberlein WG, Engel W, Mihm G, Rudolf K, Wetzel B, Entzeroth M, Mayer N, Doods HN (1989) Structure-activity relationships and pharmacological profile of selective tricyclic antimuscarinics. Trends Pharmacol Sci Suppl IV:50–54

    Article  Google Scholar 

  • Eldefrawi AT, Eldefrawi ME, Konno K, Mansour NA, Nakanishi K, Oltz E, Usherwood PN (1988) Structure and synthesis of a potent glutamate receptor antagonist in wasp venom. Proc Natl Acad Sci USA 85(13):4910–4913

    Article  CAS  PubMed  Google Scholar 

  • Fisher A (2008) Cholinergic treatments with emphasis on m1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics 5(3):433–442

    Article  CAS  PubMed  Google Scholar 

  • Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4(10):781–792

    Article  CAS  PubMed  Google Scholar 

  • Hucho F, Hilgenfeld R (1989) The selectivity filter of a ligand-gated ion channel. The helix-M2 model of the ion channel of the nicotinic acetylcholine receptor. FEBS Lett 257(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa NC, Alvarez A, Perez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto C, Garrido J (1996) Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 16(4):881–891

    Article  CAS  PubMed  Google Scholar 

  • Kostenis E, Zeng FY, Wess J (1998) Structure-function analysis of muscarinic acetylcholine receptors. J Phys 92(3-4):265–268

    CAS  Google Scholar 

  • Melchiorre C (1988) Polymethylene tetramines: a new generation of selective muscarinic antagonists. Trends Pharmacol Sci 9(6):216–220

    Article  CAS  PubMed  Google Scholar 

  • Melchiorre C (1990) Polymethylene tetraamines: a novel class of cardioselective M2-antagonists. Med Res Rev 10(3):327–349

    Article  CAS  PubMed  Google Scholar 

  • Melchiorre C, Cassinelli A, Quaglia W (1987) Differential blockade of muscarinic receptor subtypes by polymethylene tetraamines. Novel class of selective antagonists of cardiac M-2 muscarinic receptors. J Med Chem 30(1):201–204

    Article  CAS  PubMed  Google Scholar 

  • Melchiorre C, Minarini A, Angeli P, Giardina D, Gulini U, Quaglia W (1989) Polymethylene tetraamines as muscarinic receptor probes. Trends Pharmacol Sci Suppl IV:55-59

    Google Scholar 

  • Melchiorre C, Bolognesi ML, Chiarini A, Minarini A, Spampinato S (1993) Synthesis and biological activity of some methoctramine-related tetraamines bearing a 11-acetyl-5, 11-dihydro-6H-pyrido[2, 3-b][1, 4]-benzodiazepin-6-one moiety as antimuscarinics: a second generation of highly selective M2 muscarinic receptor antagonists. J Med Chem 36(23):3734–3737

    Article  CAS  PubMed  Google Scholar 

  • Melchiorre C, Minarini A, Spampinato S, Tumiatti V (1995) Design, synthesis and biological-activity of some tetraamines related to methoctramine and 4-DAMP. Bioorg Med Chem Lett 5(8):785–790

    Article  CAS  Google Scholar 

  • Melchiorre C, Andrisano V, Bolognesi ML, Budriesi R, Cavalli A, Cavrini V, Rosini M, Tumiatti V, Recanatini M (1998) Acetylcholinesterase noncovalent inhibitors based on a polyamine backbone for potential use against Alzheimer’s disease. J Med Chem 41(22):4186–4189

    Article  CAS  PubMed  Google Scholar 

  • Melchiorre C, Antonello A, Banzi R, Bolognesi ML, Minarini A, Rosini M, Tumiatti V (2003) Polymethylene tetraamine backbone as template for the development of biologically active polyamines. Med Res Rev 23(2):200–233

    Article  CAS  PubMed  Google Scholar 

  • Mellor IR, Ogilvie J, Pluteanu F, Clothier RH, Parker TL, Rosini M, Minarini A, Tumiatti V, Melchiorre C (2004) Methoctramine analogues inhibit responses to capsaicin and protons in rat dorsal root ganglion neurons. Eur J Pharm 505(1–3):37–50

    CAS  Google Scholar 

  • Minarini A, Bolognesi ML, Budriesi R, Canossa M, Chiarini A, Cacciaguerra S (1994) Design, synthesis, and biological activity of methoctramine-related tetraamines bearing an 11-acetyl-5, 11-dihydro-6H-pyrido[2, 3-b][1, 4] benzodiazepin-6-one moiety: structural requirements for optimum occupancy of muscarinic receptor subtypes as revealed by symmetrical and unsymmetrical polyamines. J Med Chem 37(20):3363–3372

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K, Huang X, Jiang H, Liu Y, Fang K, Huang D, Choi SK, Katz E, Eldefrawi M (1997) Structure-binding relation of philanthotoxins from nicotinic acetylcholine receptor binding assay. Bioorg Med Chem 5(10):1969–1988

    Article  CAS  PubMed  Google Scholar 

  • Recanatini M, Tumiatti V, Budriesi R, Chiarini A, Sabatino P, Bolognesi ML, Melchiorre C (1995) Synthesis, muscarinic blocking activity and molecular modeling studies of 4-DAMP-related compounds. Bioorg Med Chem 3(3):267–277

    Article  CAS  PubMed  Google Scholar 

  • Rosini M, Budriesi R, Bixel MG, Bolognesi ML, Chiarini A, Hucho F, Krogsgaard-Larsen P, Mellor IR, Minarini A, Tumiatti V, Usherwood PN, Melchiorre C (1999) Design, synthesis, and biological evaluation of symmetrically and unsymmetrically substituted methoctramine-related polyamines as muscular nicotinic receptor noncompetitive antagonists. J Med Chem 42(25):5212–5223

    Article  CAS  PubMed  Google Scholar 

  • Rosini M, Bixel MG, Marucci G, Budriesi R, Krauss M, Bolognesi ML, Minarini A, Tumiatti V, Hucho F, Melchiorre C (2002) Structure-activity relationships of methoctramine-related polyamines as muscular nicotinic receptor noncompetitive antagonists. 2. Role of polymethylene chain lengths separating amine functions and of substituents on the terminal nitrogen atoms. J Med Chem 45(9):1860–1878

    Article  CAS  PubMed  Google Scholar 

  • Rozental R, Scoble GT, Albuquerque EX, Idriss M, Sherby S, Sattelle DB, Nakanishi K, Konno K, Eldefrawi AT, Eldefrawi ME (1989) Allosteric inhibition of nicotinic acetylcholine receptors of vertebrates and insects by philanthotoxin. J Pharmacol Exp Ther 249(1):123–130

    CAS  PubMed  Google Scholar 

  • Salloway S, Mintzer J, Weiner MF, Cummings JL (2008) Disease-modifying therapies in Alzheimer’s disease. Alzheimers Dement 4(2):65–79

    Article  CAS  PubMed  Google Scholar 

  • Stefanelli C, Bonavita F, Stanic I, Mignani M, Facchini A, Pignatti C, Flamigni F, Caldarera CM (1998) Spermine causes caspase activation in leukaemia cells. FEBS Lett 437(3):233–236

    Article  CAS  PubMed  Google Scholar 

  • Stromgaard K, Mellor I (2004) AMPA receptor ligands: synthetic and pharmacological studies of polyamines and polyamine toxins. Med Res Rev 24(5):589–620

    Article  PubMed  Google Scholar 

  • Stromgaard K, Jensen LS, Vogensen SB (2005) Polyamine toxins: development of selective ligands for ionotropic receptors. Toxicon 45(3):249–254

    Article  CAS  PubMed  Google Scholar 

  • Stys PK, Lipton SA (2007) White matter NMDA receptors: an unexpected new therapeutic target? Trends Pharmacol Sci 28(11):561–566

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58(2):244–258

    Article  CAS  PubMed  Google Scholar 

  • Tumiatti V, Rosini M, Bartolini M, Cavalli A, Marucci G, Andrisano V, Angeli P, Banzi R, Minarini A, Recanatini M, Melchiorre C (2003) Structure-activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone. 2. Role of the substituents on the phenyl ring and nitrogen atoms of caproctamine. J Med Chem 46(6):954–966

    Article  CAS  PubMed  Google Scholar 

  • Tumiatti V, Andrisano V, Banzi R, Bartolini M, Minarini A, Rosini M, Melchiorre C (2004) Structure-activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone. 3. Effect of replacing the inner polymethylene chain with cyclic moieties. J Med Chem 47(26):6490–6498

    Article  CAS  PubMed  Google Scholar 

  • Tumiatti V, Milelli A, Minarini A, Rosini M, Bolognesi ML, Micco M, Andrisano V, Bartolini M, Mancini F, Recanatini M, Cavalli A, Melchiorre C (2008) Structure-activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone. 4. Further investigation on the inner spacer. J Med Chem 51(22):7308–7312

    Article  CAS  PubMed  Google Scholar 

  • Wallace HM, Niiranen K (2007) Polyamine analogues—an update. Amino acids 33(2):261–265

    Article  CAS  PubMed  Google Scholar 

  • Wess J, Blin N, Mutschler E, Bluml K (1995) Muscarinic acetylcholine receptors: structural basis of ligand binding and G protein coupling. Life Sci 56(11–12):915–922

    Article  CAS  PubMed  Google Scholar 

  • Zini M, Passariello CL, Gottardi D, Cetrullo S, Flamigni F, Pignatti C, Minarini A, Tumiatti V, Milelli A, Melchiorre C, Stefanelli C (2009) Cytotoxicity of methoctramine and methoctramine-related polyamines. Chem Biol Inter 181(3):409–416

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from MIUR, Rome (PRIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Minarini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minarini, A., Milelli, A., Tumiatti, V. et al. Synthetic polyamines: an overview of their multiple biological activities. Amino Acids 38, 383–392 (2010). https://doi.org/10.1007/s00726-009-0430-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0430-9

Keywords

Navigation