Skip to main content

Cutaneous application of α-methylspermidine activates the growth of resting hair follicles in mice

Abstract

Recent studies using transgenic animals have revealed a crucial role for polyamines in the development and the growth of skin and hair follicles. In mammals, the growth of hair is characterized by three main cyclic phases of transformation, including a rapid growth phase (anagen), an apoptosis-driven regression phase (catagen) and a relatively quiescent resting phase (telogen). The polyamine pool during the anagen phase is higher than in telogen and catagen phases. In this study, we used α-methylspermidine, a metabolically stable polyamine analog, to artificially elevate the polyamine pool during telogen. This manipulation was sufficient to induce hair growth in telogen phase mice after 2 weeks of daily topical application. The application site was characterized by typical features of anagen, such as pigmentation, growing hair follicles, proliferation of follicular keratinocytes and upregulation of β-catenin. The analog penetrated the protective epidermal layer of the skin and could be detected in dermis. The natural polyamines were partially replaced by the analog in the application site. However, the combined pool of natural spermidine and α-methylspermidine exceeded the physiological spermidine pool in telogen phase skin. These results highlight the role of polyamines in hair cycle regulation and show that it is possible to control the process of hair growth using physiologically stable polyamine analogs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

α-MeSpd:

α-Methylspermidine

DFMO:

Difluoromethylornithine

ODC:

Ornithine decarboxylase

PCNA:

Proliferating cell nuclear antigen

PDGF:

Platelet-derived growth factor

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SSAT:

Spermidine/spermine N 1-acetyltransferase

References

  1. Alhonen L, Räsänen TL, Sinervirta R, Parkkinen JJ, Korhonen VP, Pietilä M et al (2002) Polyamines are required for the initiation of rat liver regeneration. Biochem J 362:149–153

    Article  CAS  PubMed  Google Scholar 

  2. Alonso L, Fuchs E (2006) The hair cycle. J Cell Sci 119:391–393

    Article  CAS  PubMed  Google Scholar 

  3. Andl T, Reddy ST, Gaddapara T, Millar SE (2002) WNT signals are required for the initiation of hair follicle development. Dev Cell 2:643–653

    Article  CAS  PubMed  Google Scholar 

  4. Bachrach U (2004) Polyamines and cancer: minireview article. Amino Acids 26:307–309

    Article  CAS  PubMed  Google Scholar 

  5. Botchkareva NV, Botchkarev VA, Albers KM, Metz M, Paus R (2000) Distinct roles for nerve growth factor and brain-derived neurotrophic factor in controlling the rate of hair follicle morphogenesis. J Invest Dermatol 114:314–320

    Article  CAS  PubMed  Google Scholar 

  6. Bruegel Sanchez VL, Zhou J, LaCivita D, Milstone LM (2004) Long-term murine keratinocyte cultures become tetraploid, yet maintain the ability to stratify. J Invest Dermatol 123:403–404

    Article  PubMed  Google Scholar 

  7. Caldelari R, Suter MM, Baumann D, De Bruin A, Muller E (2000) Long-term culture of murine epidermal keratinocytes. J Invest Dermatol 114:1064–1065

    Article  CAS  PubMed  Google Scholar 

  8. Celso CL, Prowse DM, Watt FM (2004) Transient activation of {beta}-catenin signaling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 131:1787–1799

    Article  PubMed  Google Scholar 

  9. Cotsarelis G (1997) The hair follicle: dying for attention. Am J Pathol 151:1505–1509

    CAS  PubMed  Google Scholar 

  10. Danilenko DM, Ring BD, Yanagihara D, Benson W, Wiemann B, Starnes CO et al (1995) Keratinocyte growth factor is an important endogenous mediator of hair follicle growth, development, and differentiation. Normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. Am J Pathol 147:145–154

    CAS  PubMed  Google Scholar 

  11. Feith LMS, Shoop PL, Keefer KA, Prakashagowda C, Pegg AE (2007) Mouse skin chemical carcinogenesis is inhibited by antizyme in promotion-sensitive and promotion-resistant genetic backgrounds. Mol Carcinog 46:453–465

    Article  CAS  PubMed  Google Scholar 

  12. Freedberg IM, Tomic-Canic M, Komine M, Blumenberg M (2001) Keratins and the keratinocyte activation cycle. J Invest Dermatol 116:633–640

    Article  CAS  PubMed  Google Scholar 

  13. Gat U, DasGupta R, Degenstein L, Fuchs E (1998) De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 95:605–614

    Article  CAS  PubMed  Google Scholar 

  14. Guo X, Rao JN, Liu L, Rizvi M, Turner DJ, Wang JY (2002) Polyamines regulate beta-catenin tyrosine phosphorylation via Ca(2+) during intestinal epithelial cell migration. Am J Physiol Cell Physiol 283:C722–C734

    CAS  PubMed  Google Scholar 

  15. Hébert JM, Rosenquist T, Götz J, Martin GR (1994) FGF5 as a regulator of the hair growth cycle: Evidence from targeted and spontaneous mutations. Cell 78:1017–1025

    Article  PubMed  Google Scholar 

  16. Hennings H, Michael D, Cheng C, Steinert P, Holbrook K, Yuspa SH (1980) Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19:245–254

    Article  CAS  PubMed  Google Scholar 

  17. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) Beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545

    Article  CAS  PubMed  Google Scholar 

  18. Hyvönen T, Keinänen TA, Khomutov AR, Khomutov RM, Eloranta TO (1992) Monitoring of the uptake and metabolism of aminooxy analogues of polyamines in cultured cells by high-performance liquid chromatography. J Chromatogr 574:17–21

    Article  PubMed  Google Scholar 

  19. Hyvönen MT, Herzig K-H, Sinervirta R, Albrecht E, Nordback I, Sand J et al (2006) Activated polyamine catabolism in acute pancreatitis: {alpha}-methylated polyamine analogues prevent trypsinogen activation and pancreatitis-associated mortality. Am J Pathol 168:115–122

    Article  PubMed  Google Scholar 

  20. Jänne J, Alhonen L, Keinänen TA, Pietilä M, Uimari A, Pirinen E et al (2005) Animal disease models generated by genetic engineering of polyamine metabolism. J Cell Mol Med 9:865–882

    Article  PubMed  Google Scholar 

  21. Järvinen A, Grigorenko N, Khomutov AR, Hyvönen MT, Uimari A, Vepsäläinen J et al (2005) Metabolic stability of alpha-methylated polyamine derivatives and their use as substitutes for the natural polyamines. J Biol Chem 280:6595–6601

    Article  PubMed  Google Scholar 

  22. Järvinen AJ, Cerrada-Gimenez M, Grigorenko NA, Khomutov AR, Vepsäläinen JJ, Sinervirta RM et al (2006) Alpha-methyl polyamines: efficient synthesis and tolerance studies in vivo and in vitro. First evidence for dormant stereospecificity of polyamine oxidase. J Med Chem 49:399–406

    Article  PubMed  Google Scholar 

  23. Loikkanen I, Lin Y, Railo A, Pajunen A, Vainio S (2005) Polyamines are involved in murine kidney development controlling expression of c-ret, E-cadherin, and Pax2/8 genes. Differentiation 73:303–312

    Article  CAS  PubMed  Google Scholar 

  24. Maga G, Hubscher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116:3051–3060

    Article  CAS  PubMed  Google Scholar 

  25. Megosh L, Gilmour SK, Rosson D, Soler AP, Blessing M, Sawicki JA et al (1995) Increased frequency of spontaneous skin tumors in transgenic mice which overexpress ornithine decarboxylase. Cancer Res 55:4205–4209

    CAS  PubMed  Google Scholar 

  26. Merentie M, Uimari A, Pietilä M, Sinervirta R, Keinänen TA, Vepsäläinen J et al (2007) Oxidative stress and inflammation in the pathogenesis of activated polyamine catabolism-induced acute pancreatitis. Amino Acids 33:323–330

    Article  CAS  PubMed  Google Scholar 

  27. Millar SE (2002) Molecular mechanisms regulating hair follicle development. J Invest Dermatol 118:216–225

    Article  CAS  PubMed  Google Scholar 

  28. Muller-Rover S, Handjiski B, van der Veen C, Eichmuller S, Foitzik K, McKay IA et al (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117:3–15

    Article  CAS  PubMed  Google Scholar 

  29. Paus R, Stenn KS, Link RE (1989) The induction of anagen hair growth in telogen mouse skin by cyclosporine A administration. Lab Invest 60:365–369

    CAS  PubMed  Google Scholar 

  30. Pietilä M, Alhonen L, Halmekytö M, Kanter P, Jänne J, Porter CW (1997) Activation of polyamine catabolism profoundly alters tissue polyamine pools and affects hair growth and female fertility in transgenic mice overexpressing spermidine/spermine N1-acetyltransferase. J Biol Chem 272:18746–18751

    Article  PubMed  Google Scholar 

  31. Pietilä M, Parkkinen JJ, Alhonen L, Jänne J (2001) Relation of skin polyamines to the hairless phenotype in transgenic mice overexpressing spermidine/spermine N-acetyltransferase. J Invest Dermatol 116:801–805

    Article  PubMed  Google Scholar 

  32. Pietilä M, Pirinen E, Keskitalo S, Juutinen S, Pasonen-Seppänen S, Keinänen T et al (2005) Disturbed keratinocyte differentiation in transgenic mice and organotypic keratinocyte cultures as a result of spermidine/spermine N-acetyltransferase overexpression. J Invest Dermatol 124:596–601

    Article  PubMed  Google Scholar 

  33. Räsänen TL, Alhonen L, Sinervirta R, Keinänen T, Herzig KH, Suppola S et al (2002) A polyamine analogue prevents acute pancreatitis and restores early liver regeneration in transgenic rats with activated polyamine catabolism. J Biol Chem 277:39867–39872

    Article  PubMed  Google Scholar 

  34. Seiler N (2004) Catabolism of polyamines. Amino Acids 216:217–233

    Google Scholar 

  35. Shantz LM, Levin VA (2007) Regulation of ornithine decarboxylase during oncogenic transformation: mechanisms and therapeutic potential. Amino Acids 33:213–223

    Article  CAS  PubMed  Google Scholar 

  36. Shapiro J, Lui H (2001) Vaniqa–eflornithine 13.9% cream. Skin Therapy Lett 6:1–3

    CAS  PubMed  Google Scholar 

  37. Slominski A, Paus R, Costantino R (1991) Differential expression and activity of melanogenesis-related proteins during induced hair growth in mice. J Invest Dermatol 96:172–179

    Article  CAS  PubMed  Google Scholar 

  38. Slominski A, Wortsman J, Plonka PM, Schallreuter KU, Paus R, Tobin DJ (2005) Hair follicle pigmentation. J Invest Dermatol 124:13–21

    Article  CAS  PubMed  Google Scholar 

  39. Soler AP, Gilliard G, Megosh LC, O’Brien TG (1996) Modulation of murine hair follicle function by alterations in ornithine decarboxylase activity. J Invest Dermatol 106:1108–1113

    Article  CAS  PubMed  Google Scholar 

  40. Tomita Y, Akiyama M, Shimizu H (2006) PDGF isoforms induce and maintain anagen phase of murine hair follicles. J Dermatol Sci 43:105–115

    Article  CAS  PubMed  Google Scholar 

  41. Tsuruda A, Kawano Y, Maekawa T, Oka S (2005) A short peptide GPIGS promotes proliferation of hair bulb keratinocytes and accelerates hair regrowth in mice. Biol Pharm Bull 28:485–489

    Article  CAS  PubMed  Google Scholar 

  42. van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L et al (1994) Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 8:2691–2703

    Article  PubMed  Google Scholar 

  43. Van Mater D, Kolligs FT, Dlugosz AA, Fearon ER (2003) Transient activation of beta -catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev 17:1219–1224

    Article  PubMed  Google Scholar 

  44. Vanscott EJ, Ekel TM, Auerbach R (1963) Determinants of rate and kinetics of cell division in scalp hair. J Invest Dermatol 41:269–273

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Sisko Juutinen, Anne Karppinen and Tuula Reponen for their skillful technical assistance. This work was supported by the Kuopio University Pharmacy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marko Pietilä.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fashe, T.M., Keinänen, T.A., Grigorenko, N.A. et al. Cutaneous application of α-methylspermidine activates the growth of resting hair follicles in mice. Amino Acids 38, 583–590 (2010). https://doi.org/10.1007/s00726-009-0421-x

Download citation

Keywords

  • Alopecia
  • Polyamine
  • Skin
  • Spermidine