Skip to main content
Log in

Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Pyoverdines, the main siderophores produced by fluorescent Pseudomonads, comprise a fluorescent dihydroxyquinoline chromophore attached to a strain-specific peptide. These molecules are thought to be synthesized as non-fluorescent precursor peptides that are then modified to give functional pyoverdines. Using the fluorescent properties of PVDI, the pyoverdine produced by Pseudomonas aeruginosa PAO1, we were able to show that PVDI was not present in the cytoplasm of the bacteria, but large amounts of a fluorescent PVDI precursor PVDIp were stored in the periplasm. Like PVDI, PVDIp is able to transport iron into P. aeruginosa cells. Mutation of genes encoding the periplasmic PvdN, PvdO and PvdP proteins prevented accumulation of PVDIp in the periplasm and secretion of PVDI into the growth medium, indicating that these three enzymes are involved in PVDI synthesis. Mutation of the gene encoding PvdQ resulted in the presence of fluorescent PVDI precursor in the periplasm and secretion of a functional fluorescent siderophore that had different isoelectric properties to PVDI, suggesting a role for PvdQ in the periplasmic maturation of PVDI. Mutation of the gene encoding the export ABC transporter PvdE prevented PVDI production and accumulation of PVDIp in the periplasm. These data are consistent with a model in which a PVDI precursor peptide is synthesized in the cytoplasm and exported to the periplasm by PvdE where siderophore maturation, including formation of the chromophore moiety, occurs in a process involving the PvdN, PvdO, PvdP and PvdQ proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdallah MA, Pattus F (2000) Siderophores and iron-transport in microorganisms. J Chin Chem Soc 47:1–20

    Google Scholar 

  • Ackerley DF, Caradoc-Davies TT, Lamont IL (2003) Substrate specificity of the nonribosomal peptide synthetase PvdD from Pseudomonas aeruginosa. J Bacteriol 185:2848–2855

    Article  CAS  PubMed  Google Scholar 

  • Albrecht-Gary AM, Blanc S, Rochel N, Ocacktan AZ, Abdallah MA (1994) Bacterial iron transport: coordination properties of pyoverdin PaA, a peptidic siderophore of Pseudomonas aeruginosa. Inorg Chem 33:6391–6402

    Article  CAS  Google Scholar 

  • Baysse C, De Vos D, Naudet Y, Vandermonde A, Ochsner U, Meyer JM, Budzikiewicz H, Schafer M, Fuchs R, Cornelis P (2000) Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa. Microbiology 146(Pt 10):2425–2434

    CAS  PubMed  Google Scholar 

  • Baysse C, Budzikiewicz H, Uria Fernandez D, Cornelis P (2002) Impaired maturation of the siderophore pyoverdine chromophore in Pseudomonas fluorescens ATCC 17400 deficient for the cytochrome c biogenesis protein CcmC. FEBS Lett 523:23–28

    Article  CAS  PubMed  Google Scholar 

  • Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ (2009) New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ Microbiol 11:1079–1091

    Article  CAS  PubMed  Google Scholar 

  • Braun V (2003) Iron uptake by Escherichia coli. Front Biosci 8:1409–1421

    Article  Google Scholar 

  • Brillet K, Journet L, Celia H, Paulus L, Stahl A, Pattus F, Cobessi D (2007) A β-strand lock-exchange for signal transduction in TonB-dependent transducers on the basis of a common structural motif. Structure 15:1383–1391

    Article  CAS  PubMed  Google Scholar 

  • Budzikiewicz H (2004) Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). Fortschr Chem Org Naturst 87:81–237

    CAS  PubMed  Google Scholar 

  • Chuanchuen R, Narasaki CT, Schweizer HP (2002) Benchtop and microcentrifuge preparation of Pseudomonas aeruginosa competent cells. Biotechniques 33(760):762–763

    Google Scholar 

  • Clarke-Pearson MF, Brady SF (2008) Paerucumarin, a new metabolite produced by the pvc gene cluster from Pseudomonas aeruginosa. J Bacteriol 190:6927–6930

    Article  CAS  PubMed  Google Scholar 

  • Clément E, Mesini PJ, Pattus F, Abdallah MA, Schalk IJ (2004) The binding mechanism of pyoverdin with the outer membrane receptor FpvA in Pseudomonas aeruginosa is dependent on its iron-loaded status. Biochemistry 43:7954–7965

    Article  PubMed  Google Scholar 

  • Cobessi D, Célia H, Folschweiller N, Schalk IJ, Abdallah MA, Pattus F (2005) The crystal structure of the pyoverdin outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 Å resolution. J Mol Biol 34:121–134

    Article  Google Scholar 

  • Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798

    Article  CAS  PubMed  Google Scholar 

  • Demange P, Wendenbaum S, Linget C, Mertz C, Cung MT, Dell A, Abdallah MA (1990) Bacterial siderophores: structure and NMR assignment of pyoverdins PaA, siderophores of Pseudomonas aeruginosa ATCC 15692. Biol Metals 3:155–170

    Article  CAS  Google Scholar 

  • Dorrestein P, Begley TP (2005) Oxidative cascades: a facile biosynthetic strategy for the assembly of complex molecules. Bioorg Chem 33:136–148

    Article  CAS  PubMed  Google Scholar 

  • Dorrestein PC, Poole K, Begley TP (2003) Formation of the chromophore of the pyoverdine siderophores by an oxidative cascade. Org Lett 5:2215–2217

    Article  CAS  PubMed  Google Scholar 

  • Folschweiller N, Gallay J, Vincent M, Abdallah MA, Pattus F, Schalk IJ (2002) The interaction between pyoverdin and its outer membrane receptor in Pseudomonas aeruginosa leads to different conformers: a time-resolved fluorescence study. Biochemistry 41:14591–14601

    Article  CAS  PubMed  Google Scholar 

  • Fuchs R, Schafer M, Geoffroy V, Meyer JM (2001) Siderotyping—a powerful tool for the characterization of pyoverdines. Curr Top Med Chem 1:31–57

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Seah SY (2006) Heterologous expression, purification, and characterization of an l-ornithine N(5)-hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa. J Bacteriol 188:7205–7210

    Article  CAS  PubMed  Google Scholar 

  • Greenwald J, Hoegy F, Nader M, Journet L, Mislin GLA, Graumann PL, Schalk IJ (2007) Real-time FRET visualization of ferric-pyoverdine uptake in Pseudomonas aeruginosa: a role for ferrous iron. J Biol Chem 282:2987–2995

    Article  CAS  PubMed  Google Scholar 

  • Greenwald J, Nader M, Celia H, Gruffaz C, Geoffroy V, Meyer JM, Schalk IJ, Pattus F (2009) FpvA bound to non-cognate pyoverdines: molecular basis of siderophore recognition by an iron transporter. Mol Microbiol 72:1246–1259

    Article  CAS  PubMed  Google Scholar 

  • Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86

    Article  CAS  PubMed  Google Scholar 

  • Huang JJ, Petersen A, Whiteley M, Leadbetter JR (2006) Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 72:1190–1197

    Article  CAS  PubMed  Google Scholar 

  • Imperi F, Putignani L, Tiburzi F, Ambrosi C, Cipollone R, Ascenzi P, Visca P (2008) Membrane-association determinants of the omega-amino acid monooxygenase PvdA, a pyoverdine biosynthetic enzyme from Pseudomonas aeruginosa. Microbiology 154:2804–2813

    Article  CAS  PubMed  Google Scholar 

  • Koebnik R (2005) TonB-dependent trans-envelope signalling: the exception or the rule? Trends Microbiol 13:343–347

    Article  CAS  PubMed  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Lamont IL, Martin LW (2003) Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology 149:833–842

    Article  CAS  PubMed  Google Scholar 

  • Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 99:7072–7077

    Article  CAS  PubMed  Google Scholar 

  • Lamont IL, Martin LW, Sims T, Scott A, Wallace M (2006) Characterization of a gene encoding an acetylase required for pyoverdine synthesis in Pseudomonas aeruginosa. J Bacteriol 188:3149–3152

    Article  CAS  PubMed  Google Scholar 

  • Lehoux DE, Sanschagrin F, Levesque RC (2000) Genomics of the 35-kb pvd locus and analysis of novel pvdIJK genes implicated in pyoverdine biosynthesis in Pseudomonas aeruginosa. FEMS Microbiol Lett 190:141–146

    Article  CAS  PubMed  Google Scholar 

  • Lewenza S, Gardy JL, Brinkman FS, Hancock RE (2005) Genome-wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoA fusion screen. Genome Res 15:321–329

    Article  CAS  PubMed  Google Scholar 

  • Mascarenhas J, Soppa J, Strunnikov AV, Graumann PL (2002) Cell cycle-dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in Bacillus subtilis that interact with SMC protein. EMBO J 21:3108–3118

    Article  CAS  PubMed  Google Scholar 

  • McMorran BJ, Merriman ME, Rombel IT, Lamont IL (1996) Characterisation of the pvdE gene which is required for pyoverdine synthesis in Pseudomonas aeruginosa. Gene 176:55–59

    Article  CAS  PubMed  Google Scholar 

  • McMorran BJ, Kumara HM, Sullivan K, Lamont IL (2001) Involvement of a transformylase enzyme in siderophore synthesis in Pseudomonas aeruginosa. Microbiology 147:1517–1524

    CAS  PubMed  Google Scholar 

  • Merriman TR, Merriman ME, Lamont IL (1995) Nucleotide sequence of pvdD, a pyoverdine biosynthetic gene from Pseudomonas aeruginosa: PvdD has similarity to peptide synthetases. J Bacteriol 177:252–258

    CAS  PubMed  Google Scholar 

  • Meyer JM, Stintzi A, De Vos D, Cornelis P, Tappe R, Taraz K, Budzikiewicz H (1997) Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143(Pt 1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Meyer JM, Stintzi A, Poole K (1999) The ferripyoverdine receptor FpvA of Pseudomonas aeruginosa PAO1 recognizes the ferripyoverdines of P. aeruginosa PAO1 and P. fluorescens ATCC 13525. FEMS Microbiol Lett 170:145–150

    Article  CAS  PubMed  Google Scholar 

  • Meyer JM, Gruffaz C, Raharinosy V, Bezverbnaya I, Schafer M, Budzikiewicz H (2008) Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21:259–271

    Article  CAS  PubMed  Google Scholar 

  • Mossialos D, Ochsner U, Baysse C, Chablain P, Pirnay JP, Koedam N, Budzikiewicz H, Fernandez DU, Schafer M, Ravel J, Cornelis P (2002) Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Mol Microbiol 45:1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Nader M, Dobbelaere W, Vincent M, Journet L, Adams H, Cobessi D, Gallay J, Schalk IJ (2007) Identification of residues of FpvA involved in the different steps of Pvd-Fe uptake in Pseudomonas aeruginosa. Biochemistry 46:11707–11717

    Article  CAS  PubMed  Google Scholar 

  • Ochsner U, Snyder A, Vasil AI, Vasil ML (2002a) Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis. Proc Natl Acad Sci USA 99:8312–8317

    Article  CAS  PubMed  Google Scholar 

  • Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML (2002b) GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45:1277–1287

    Article  CAS  PubMed  Google Scholar 

  • Page WJ, Kwon E, Cornish AS, Tindale AE (2003) The csbX gene of Azotobacter vinelandii encodes an MFS efflux pump required for catecholate siderophore export. FEMS Microbiol Lett 228:211–216

    Article  CAS  PubMed  Google Scholar 

  • Poole K, McKay GA (2003) Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Front Biosci 8:d661–d686

    Article  CAS  PubMed  Google Scholar 

  • Poole K, Heinrichs DE, Neshat S (1993a) Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyoverdine. Mol Microbiol 10:529–544

    Article  CAS  PubMed  Google Scholar 

  • Poole K, Neshat S, Krebes K, Heinrichs DE (1993b) Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa. J Bacteriol 175:4597–4604

    CAS  PubMed  Google Scholar 

  • Postle K, Kadner RJ (2003) Touch and go: tying TonB to transport. Mol Microbiol 49:869–882

    Article  CAS  PubMed  Google Scholar 

  • Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11:195–200

    CAS  PubMed  Google Scholar 

  • Rombel IT, McMorran BJ, Lamont IL (1995) Identification of a DNA sequence motif required for expression of iron-regulated genes in pseudomonads. Mol Gen Genet 246:519–528

    Article  CAS  PubMed  Google Scholar 

  • Royle PL, Matsumoto H, Holloway BW (1981) Genetic circularity of the Pseudomonas aeruginosa PAO chromosome. J Bacteriol 145:145–155

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor, NY

    Google Scholar 

  • Saurin W, Hofnung M, Dassa E (1999) Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J Mol Evol 48:22–41

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ (2008) Metal trafficking via siderophores in Gram-negative bacteria: specificities and characteristics of the pyoverdine pathway. J Inorg Biochem 102:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ, Kyslik P, Prome D, van Dorsselaer A, Poole K, Abdallah MA, Pattus F (1999) Copurification of the FpvA ferric pyoverdin receptor of Pseudomonas aeruginosa with its iron-free ligand: implications for siderophore-mediated iron transport. Biochemistry 38:9357–9365

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ, Hennard C, Dugave C, Poole K, Abdallah MA, Pattus F (2001) Iron-free pyoverdin binds to its outer membrane receptor FpvA in Pseudomonas aeruginosa: a new mechanism for membrane iron transport. Mol Microbiol 39:351–360

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ, Abdallah MA, Pattus F (2002) Recycling of pyoverdin on the FpvA receptor after ferric pyoverdin uptake and dissociation in Pseudomonas aeruginosa. Biochemistry 41:1663–1671

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Meldrum A, Poole K (2002) FpvA receptor involvement in pyoverdine biosynthesis in Pseudomonas aeruginosa. J Bacteriol 184:3268–3275

    Article  CAS  PubMed  Google Scholar 

  • Shirley M, Lamont IL (2009) Role of TonB1 in pyoverdine-mediated signaling in Pseudomonas aeruginosa. J Bacteriol 191:5634–5640

    Article  CAS  PubMed  Google Scholar 

  • Simon R, O’Connell M, Labes M, Puhler A (1986) Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. Methods Enzymol 118:640–659

    Article  CAS  PubMed  Google Scholar 

  • Takase H, Nitanai H, Hoshino K, Otani T (2000) Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect Immun 68:1834–1839

    Article  CAS  PubMed  Google Scholar 

  • Vandenende CS, Vlasschaert M, Seah SY (2004) Functional characterization of an aminotransferase required for pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa PAO1. J Bacteriol 186:5596–5602

    Article  CAS  PubMed  Google Scholar 

  • Visca P (2004) Iron regulation and siderophore signalling in virulence by Pseudomonas aeruginosa. In: Juan-Luis R (ed) Pseudomonas, vol 2. Kluwer/Plenum Publishers, New York, pp 69–123

  • Visca P, Ciervo A, Orsi N (1994) Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme l-ornithine N5-oxygenase in Pseudomonas aeruginosa. J Bacteriol 176:1128–1140

    CAS  PubMed  Google Scholar 

  • Visca P, Leoni L, Wilson MJ, Lamont IL (2002) Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 45:1177–1190

    Article  CAS  PubMed  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30

    Article  CAS  PubMed  Google Scholar 

  • Voulhoux R, Filloux A, Schalk IJ (2006) Role of the TAT System in the pyoverdine-mediated iron acquisition in Pseudomonas aeruginosa. J Bacteriol 188:3317–3323

    Article  CAS  PubMed  Google Scholar 

  • West SE, Schweizer HP, Dall C, Sample AK, Runyen-Janecky LJ (1994) Construction of improved Escherichia–Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148:81–86

    Article  CAS  PubMed  Google Scholar 

  • Wiener MC (2005) TonB-dependent outer membrane transport: going for Baroque? Curr Opin Struct Biol 15:394–400

    Article  CAS  PubMed  Google Scholar 

  • Yoder MF, Kisaalita WS (2006) Fluorescence of pyoverdin in response to iron and other common well water metals. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:369–380

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Centre National de la Recherche Scientifique (CNRS) and by the association Mucoviscidose ABCF. E. Yeterian had a fellowship from the French Ministère de la Recherche et de la Technologie. The authros are grateful to Keith Poole for providing plasmid pJSS2, to Karla Mettrick for constructing the fpvA and fpvA fpvR mutant strains and to Dr Gaëtan L. A. Mislin for mass spectrum analyses and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle J. Schalk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeterian, E., Martin, L.W., Guillon, L. et al. Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation. Amino Acids 38, 1447–1459 (2010). https://doi.org/10.1007/s00726-009-0358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0358-0

Keywords

Navigation