Skip to main content
Log in

Transglutaminase-dependent antiproliferative and differentiative properties of nimesulide on B16-F10 mouse melanoma cells

Amino Acids Aims and scope Submit manuscript

Abstract

The aim of this study was to collect evidences on the role of transglutaminase (TG, E.C.2.3.2.13) in the antineoplastic properties exerted by nimesulide (NMS), a non-steroidal anti-inflammatory drug, on murine B16-F10 melanoma cells. Treatment of melanoma cells with nimesulide produces a considerable reduction of cell proliferation, paralleled by a remarkable decrease of the intracellular concentration of polyamines spermidine and spermine. NMS treatment induces cancer cell differentiation, likely through the observed enhancement of TG and tyrosinase activities and increase of melanin production, well known markers of melanocyte differentiation. The overall results highlight the possibility that nimesulide acts as antineoplastic agent likely through the induction of intracellular TG activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Badawi AF (2000) The role of prostaglandin synthesis in prostate cancer. BJU Int 85:451–462

    Article  CAS  PubMed  Google Scholar 

  • Beninati S (1995) Post-translational modification of protein in cancer cells: the transglutaminase catalysed reactions. Cancer J 8:234–236

    Google Scholar 

  • Beninati S, Folk JE (1988) Covalent polyamine-protein conjugates: analysis and distribution. Adv Exp Med Biol 250:411–422

    CAS  PubMed  Google Scholar 

  • Beninati S, Piacentini M (2004) The transglutaminase family: an overview. Amino Acids 26:367–372

    CAS  PubMed  Google Scholar 

  • Beninati S, Abbruzzese A, Cardinali M (1993) Differences in the post-translational modification of proteins by polyamines between weakly and highly metastatic B16 melanoma cells. Int J Cancer 53:792–797

    Article  CAS  PubMed  Google Scholar 

  • Bennett A, Villa G (2000) Nimesulide: an NSAID that preferentially inhibits COX-2, and has various unique pharmacological activities. Expert Opin Pharmacother 1(2):277–286

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chang TH, Szabo E (2000) Induction of differentiation and apoptosis by ligands of peroxisome proliferator-activated receptor γ in non small cell lung cancer. Cancer Res 60:1129–1138

    CAS  PubMed  Google Scholar 

  • Chung SI, Folk JE (1972) Transglutaminase from hair follicle of guinea pig. Proc Natl Acad Sci (Wash) 69:303–307

    Article  CAS  Google Scholar 

  • Dannenberg AJ, Altorki NK, Boyle JO, Dang C, Howe LR, Weksler BB, Subbaramaiah K (2001) Cyclo-oxygenase 2: a pharmacological target for the prevention of cancer. Lancet Oncol 2(9):544–551

    Article  CAS  PubMed  Google Scholar 

  • Denda A, Kitayama W, Murata A, Kishida H, Sasaki Y, Kusuoka O, Tsujiuchi T, Tsutusumi M, Nakae D, Takagi H, Konishi Y (2002) Increased expression of cyclooxygenase-2 protein during rat hepatocarcinogenesis caused by a choline-deficient, L-amino acid-defined diet and chemopreventive efficacy of a specific inhibitor, nimesulide. Carcinogenesis (Lond) 23:245–256

    Article  CAS  Google Scholar 

  • Di Giacomo G, Lentini A, Beninati S, Piacentini M, Rodolfo C (2009) In vivo evaluation of type 2 transglutaminase contribution to the metastasis formation in melanoma. Amino Acids (in press)

  • Erwin BG, Ewton DZ, Florini JR, Pegg AE (1983) Polyamine depletion inhibits the differentiation of L6 myoblast cells. Biochem Biophys Res Commun 114(3):944–949

    Article  CAS  PubMed  Google Scholar 

  • Famaey JP (1997) In vitro and in vivo pharmacological evidence of selective cyclooxygenase-2 inhibition by nimesulide: an overview. Inflamm Res 46:437–446

    Article  CAS  PubMed  Google Scholar 

  • Fidler IJ (1973) Selection of successive tumor cell lines for metastasis. Nature (New Biol) 245:148–149

    Article  Google Scholar 

  • Folk JE (1980) Transglutaminases. Ann Rev Biochem 49:517–531

    Article  CAS  PubMed  Google Scholar 

  • Fukutake M, Nakatsugi S, Isoi T, Takahashi M, Ohta T, Mamiya S, Taniguchi Y, Sato H, Fukuda K, Sugimura T, Wakabayashi K (1998) Suppressive effects of nimesulide, a selective inhibitor of cyclooxygenase-2 on azoxymethane-induced colon carcinogenesis in mice. Carcinogenesis (Lond) 19:1939–1942

    Article  CAS  Google Scholar 

  • Greenberg CS, Birckbichler PJ, Rice RH (1991) Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J 5(15):3071–3077

    CAS  PubMed  Google Scholar 

  • Haydon RC, Zhou L, Feng T, Breyer B, Cheng H, Jiang W, Ishikawa A, Peabody T, Montag A, Simon MA, He TC (2002) Nuclear receptor agonists as potential differentiation therapy agents for human osteosarcoma. Clin Cancer Res 8:1288–1294

    CAS  PubMed  Google Scholar 

  • Haynes AH, Shaik MS, Chatterjee A, Singh M (2003) Evaluation of an aerosolized selective COX-2 inhibitor as a potentiator of doxorubicin in a non-small cell lung cancer cell line. Pharm Res 20(9):1485–1495

    Article  CAS  PubMed  Google Scholar 

  • Hearing VJ, Tsukamoto K (1991) Enzymatic control of pigmentation in mammals. FASEB J 5(14):2902–2909

    CAS  PubMed  Google Scholar 

  • Heby O (1981) Role of polyamines in the control of cell proliferation and differentiation. Differentiation 19:1–20

    Article  CAS  PubMed  Google Scholar 

  • Lentini A, Beninati S (2002) Differentiation therapy of cancer: transglutaminase as differentiative tool. Minerva Biotech 14:159–164

    Google Scholar 

  • Lentini A, Forni C, Provenzano B, Beninati S (2007) Enhancement of transglutaminase activity and polyamine depletion in B16-F10 melanoma cells by flavonoids naringenin and hesperitin correlate to reduction of the in vivo metastatic potential. Amino Acids 32(1):95–100

    Article  CAS  PubMed  Google Scholar 

  • Lentini A, Provenzano B, Tabolacci C, Beninati S (2009) Protein–polyamine conjugates by transglutaminase 2 as potential markers for antineoplastic screening of natural compounds. Amino Acids (in press)

  • Lotan R, Lotan D (1980) Stimulation of melanogenesis in a human melanoma cell by retinoids. Cancer Res 40:3345–3350

    CAS  PubMed  Google Scholar 

  • Maier JAM, Hla T, Maciag T (1990) Cyclooxygenase is an immediate-early gene induced by interleukin-1 in human endothelial cells. J Biol Chem 265(19):10805–10808

    CAS  PubMed  Google Scholar 

  • Marnett LJ (1990) Prostaglandin synthase-mediated metabolism of carcinogens and a potential role for peroxyl radicals as reactive intermediates. Env Health Perspect 88:5–12

    Article  CAS  Google Scholar 

  • Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM, Edwards DA, Flickinger AG, Moore RJ, Seibert K (2000) Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 60:1306–1311

    CAS  PubMed  Google Scholar 

  • Molina MA, Sitja-Arnau M, Lemoine MG, Frazier ML, Sinicrope FA (1999) Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: growth inhibition by nonsteroidal anti-inflammatory drugs. Cancer Res 59:4356–4362

    CAS  PubMed  Google Scholar 

  • Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M, Fletcher C, Singer S, Spiegelman BM (1998) Terminal differentiation of human breast cancer through PPARγ. Mol Cell 1:465–470

    Article  CAS  PubMed  Google Scholar 

  • Parrett ML, Harris RE, Joarder FS, Ross MS, Clausen KP, Robertson FM (1997) Cyclooxygenase-2 expression in human breast cancer. Int J Oncol 10:503–507

    CAS  Google Scholar 

  • Russell DH (1977) Clinical relevance of polyamines as biochemical markers of tumor kinetics. Clin Chem 23(1):22–27

    CAS  PubMed  Google Scholar 

  • Sarkar FH, Yiwei L (2006) Using chemopreventive agents to enhance the efficacy of cancer therapy. Cancer Res 66(7):3347–3350

    Article  CAS  PubMed  Google Scholar 

  • Sarraf P, Mueller E, Jones D, King FJ, De Angelo DJ, Partridge BJ, Holden SA, Chen LB, Singer S, Fletcher C, Spiegelman MB (1998) Differentiation and reversal of malignant changes in colon cancer through PPARγ. Nat Med 4(9):1046–1052

    Article  CAS  PubMed  Google Scholar 

  • Sheng H, Shao J, Kirkland S, Isakson P, Coffey JR, Morrow J, Beauchamp RD, DuBois RN (1997) Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Invest 99(9):2254–2259

    Article  CAS  PubMed  Google Scholar 

  • Subbaramaiah K, Dannenberg AJ (2003) Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci 24:96–102

    Article  CAS  PubMed  Google Scholar 

  • Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49(1):81–99

    CAS  PubMed  Google Scholar 

  • Thiele CJ, Gore S, Collins S, Waxman S, Miller W (2000) Differentiate or die: tie view from Montreal. Cell Death Differ 7:1014–1017

    Article  CAS  PubMed  Google Scholar 

  • Trifan OC, Durham WF, Salazar VS, Horton J, Levine BD, Zweifel BS, Davis TW, Masferrer LJ (2002) Cyclooxygenase-2 inhibition with celecoxib enhances antitumor efficacy and reduces diarrhoea side effect of CPT-11. Cancer Res 62:5778–5784

    CAS  PubMed  Google Scholar 

  • Tucker ON, Dannenberg AJ, Yang EK, Zhang F, Teng L, Daly JM, Soslow RA, Masferrer JL, Woerner MB, Koki TA, Fahey JT (1999) Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res 59:987–990

    CAS  PubMed  Google Scholar 

  • Vosper H, Khoudoli GA, Palmer CNA (2003) The peroxisome proliferator activated receptor δ is required for the differentiation of THP-1 monocytic cells by phorbol ester. Nucl Recept 1:1–10

    Article  Google Scholar 

  • Wick M, Hurteau G, Dessev C, Daniel C, Geraci MW, Winn RA, Heasley LE, Nemenoff RA (2002) Peroxisome proliferator-activated receptor-γ is a target of nonsteroidal anti-inflammatory drugs mediating cyclooxygenase-independent inhibition of lung cancer cell growth. Mol Pharm 62:1207–1214

    Article  CAS  Google Scholar 

  • Yokozawa T, Kim YJ (2007) Piceatannol inhibits melanogenesis by its antioxidative actions. Biol. Pharm. Bull 30(11):2007–2011

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann KC, Sarbia M, Weber AA, Borchard F, Gabert HE, Schror K (1999) Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res 59:198–204

    CAS  PubMed  Google Scholar 

  • Zweifel BS, Davis TW, Ornberg RL, Masferrer JL (2002) Direct evidence for a role of cyclooxygenase-2 derived prostaglandin E2 in human head and neck xenograft tumors. Cancer Res 62:6706–6711

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from MIUR (PRIN 2004, project no. 2004067819) and from COST Action 922.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Beninati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gismondi, A., Lentini, A., Tabolacci, C. et al. Transglutaminase-dependent antiproliferative and differentiative properties of nimesulide on B16-F10 mouse melanoma cells. Amino Acids 38, 257–262 (2010). https://doi.org/10.1007/s00726-009-0244-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0244-9

Keywords

Navigation