Amino Acids

, Volume 37, Issue 1, pp 111–122 | Cite as

Glutamine, arginine, and leucine signaling in the intestine

Review Article


Glutamine and leucine are abundant constituents of plant and animal proteins, whereas the content of arginine in foods and physiological fluids varies greatly. Besides their role in protein synthesis, these three amino acids individually activate signaling pathway to promote protein synthesis and possibly inhibit autophagy-mediated protein degradation in intestinal epithelial cells. In addition, glutamine and arginine stimulate the mitogen-activated protein kinase and mammalian target of rapamycin (mTOR)/p70 (s6) kinase pathways, respectively, to enhance mucosal cell migration and restitution. Moreover, through the nitric oxide-dependent cGMP signaling cascade, arginine regulates multiple physiological events in the intestine that are beneficial for cell homeostasis and survival. Available evidence from both in vitro and in vivo animal studies shows that glutamine and arginine promote cell proliferation and exert differential cytoprotective effects in response to nutrient deprivation, oxidative injury, stress, and immunological challenge. Additionally, when nitric oxide is available, leucine increases the migration of intestinal cells. Therefore, through cellular signaling mechanisms, arginine, glutamine, and leucine play crucial roles in intestinal growth, integrity, and function.


Amino acids Cellular signaling Intestine Nutrition 





Extracellular signal-related kinase




Heme oxygenase


Heat shock proteins




Mitogen-activated protein kinase


MAPK kinase


Mammalian target of rapamycin


Nitric oxide


  1. Alican I, Kubes P (1996) A critical role for nitric oxide in intestinal barrier function and dysfunction. Am J Physiol 270:G225–G237PubMedGoogle Scholar
  2. Argenzio RA, Rhoads JM, Armstrong M, Gomez G (1994) Glutamine stimulates prostaglandin-sensitive Na(+)-H+ exchange in experimental porcine cryptosporidiosis. Gastroenterology 106:1418–1428PubMedGoogle Scholar
  3. Avissar NE, Ziegler TR, Toia L et al (2004) ATB0/ASCT2 expression in residual rabbit bowel is decreased after massive enterectomy and is restored by growth hormone treatment. J Nutr 134:2173–2177PubMedGoogle Scholar
  4. Ban H, Shigemitsu K, Yamatsuji T et al (2004) Arginine and Leucine regulate p70 s6kinase and 4E-BP1 in intestinal epithelial cells. Int J Mol Med 13:537–543PubMedGoogle Scholar
  5. Barbul A (1986) Arginine: biochemistry, physiology, and therapeutic implications. J Parenter Enteral Nutr 10:227–238CrossRefGoogle Scholar
  6. Beale RJ, Sherry T, Lei K et al (2008) Early enteral supplementation with key pharmaconutrients improves sequential organ failure assessment score in critically ill patients with sepsis: outcome of a randomized, controlled, double-blind trial. Crit Care Med 36:131–144PubMedCrossRefGoogle Scholar
  7. Becker RM, Wu G, Galanko JA et al (2000) Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J Pediatr 137:785–793PubMedCrossRefGoogle Scholar
  8. Bilban M, Haschemi A, Wegiel B et al (2008) Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med 86:267–279PubMedCrossRefGoogle Scholar
  9. Blachier F, Mariotti F, Huneau JF, Tomé D (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33:547–562PubMedCrossRefGoogle Scholar
  10. Blikslager AT, Rhoads JM, Bristol DG et al (1999) Glutamine and transforming growth factor-alpha stimulate extracellular regulated kinases and enhance recovery of villous surface area in porcine ischemic-injured intestine. Surgery 125:186–194PubMedGoogle Scholar
  11. Blommaart EF, Luiken JJ, Blommaart PJ et al (1995) Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 270:2320–2326PubMedCrossRefGoogle Scholar
  12. Boelens PG, Nijveldt RJ, Houdijk AP et al (2001) Glutamine alimentation in catabolic state. J Nutr 131:2569S–2577SPubMedGoogle Scholar
  13. Buchman AL (2001) Glutamine: commercially essential or conditionally essential? A critical appraisal of the human data. Am J Clin Nutr 74:25–32PubMedGoogle Scholar
  14. Chen LX, Yin YL, Jobgen WS et al (2007) In vitro oxidation of essential amino acids by jejunal mucosal cells of growing pigs. Livest Sci 109:19–23CrossRefGoogle Scholar
  15. Chen G, Shi J, Qi M et al (2008) Glutamine decreases intestinal nuclear factor kappa B activity and pro-inflammatory cytokine expression after traumatic brain injury in rats. Inflamm Res 57:57–64PubMedCrossRefGoogle Scholar
  16. Coeffier M, Miralles-Barrachina O, Le PF et al (2001) Influence of glutamine on cytokine production by human gut in vitro. Cytokine 13:148–154PubMedCrossRefGoogle Scholar
  17. Coeffier M, Marion R, Ducrotte P, Dechelotte P (2003) Modulating effect of glutamine on IL-1beta-induced cytokine production by human gut. Clin Nutr 22:407–413PubMedCrossRefGoogle Scholar
  18. Corl BA, Odle J, Niu X et al (2008) Arginine activates intestinal p70(s6k) and protein synthesis in piglet rotavirus enteritis. J Nutr 138:24–29PubMedGoogle Scholar
  19. Curis E, Crenn P, Cynober L (2007) Citrulline and the gut. Curr Opin Clin Nutr Metab Care 10:620–626PubMedCrossRefGoogle Scholar
  20. Dalmasso G, Charrier-Hisamuddin L, Thu Nguyen HT et al (2008) PepT1-mediated tripeptide KPV uptake reduces intestinal inflammation. Gastroenterology 134:166–178PubMedCrossRefGoogle Scholar
  21. Deniel N, Marion-Letellier R, Charlionet R et al (2007) Glutamine regulates the human epithelial intestinal HCT-8 cell proteome under apoptotic conditions. Mol Cell Proteomics 6:1671–1679PubMedCrossRefGoogle Scholar
  22. Derikx JP, Poeze M, van Bijnen AA et al (2007) Evidence for intestinal and liver epithelial cell injury in the early phase of sepsis. Shock 28:544–548PubMedGoogle Scholar
  23. Di LM, Krantis A (2002) Nitric oxide synthase isoenzyme activities in a premature piglet model of necrotizing enterocolitis: effects of nitrergic manipulation. Pediatr Surg Int 18:624–629CrossRefGoogle Scholar
  24. Evans ME, Jones DP, Ziegler TR (2003) Glutamine prevents cytokine-induced apoptosis in human colonic epithelial cells. J Nutr 133:3065–3071PubMedGoogle Scholar
  25. Fischer CP, Bode BP, Abcouwer SF et al (1995) Hepatic uptake of glutamine and other amino acids during infection and inflammation. Shock 3:315–322PubMedCrossRefGoogle Scholar
  26. Flynn NE, Bird JG, Guthrie AS (2008) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids. doi:10.1007/s00726-008-0206-7
  27. Fu WJ, Haynes TE, Kohli R (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721PubMedGoogle Scholar
  28. Fuchs BC, Perez JC, Suetterlin JE et al (2004) Inducible antisense RNA targeting amino acid transporter ATB0/ASCT2 elicits apoptosis in human hepatoma cells. Am J Physiol Gastrointest Liver Physiol 286:G467–G478PubMedCrossRefGoogle Scholar
  29. Giris M, Erbil Y, Oztezcan S et al (2006) The effect of heme oxygenase-1 induction by glutamine on radiation-induced intestinal damage: the effect of heme oxygenase-1 on radiation enteritis. Am J Surg 191:503–509PubMedCrossRefGoogle Scholar
  30. Gookin JL, Foster DM, Coccaro MR, Stauffer SH (2008) Oral delivery of l-arginine stimulates prostaglandin-dependent secretory diarrhea in Cryptosporidium parvum-infected neonatal piglets. J Pediatr Gastroenterol Nutr 46:139–146PubMedCrossRefGoogle Scholar
  31. Hayashi M, Sakai T, Hasegawa Y et al (1999) Physiological mechanism for enhancement of paracellular drug transport. J Control Release 62:141–148PubMedCrossRefGoogle Scholar
  32. He QH, Kong XF, Wu G et al. (2008) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids. doi:10.1007/s00726-008-0192-9
  33. Houdijk AP, Rijnsburger ER, Jansen J et al (1998) Randomised trial of glutamine-enriched enteral nutrition on infectious morbidity in patients with multiple trauma. Lancet 352:772–776PubMedCrossRefGoogle Scholar
  34. Ito Y, Doelle SM, Clark JA et al (2007) Intestinal microcirculatory dysfunction during the development of experimental necrotizing enterocolitis. Pediatr Res 61:180–184PubMedCrossRefGoogle Scholar
  35. Jiang ZM, Wang LJ, Qi Y et al (1993) Comparison of parenteral nutrition supplemented with l-glutamine or glutamine dipeptides. J Parenter Enteral Nutr 17:134–141CrossRefGoogle Scholar
  36. Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588PubMedCrossRefGoogle Scholar
  37. Jobgen WJ, Meininger CJ, Jobgen SC et al. (2008) Dietary l-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr. doi:10.3945/jn.108.096362
  38. Kadowaki M, Kanazawa T (2003) Amino acids as regulators of proteolysis. J Nutr 133:2052S–2056SPubMedGoogle Scholar
  39. Kim SW, Wu G (2008) Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids. doi:10.1007/s00726-008-0151-5
  40. Kimball SR, Jefferson LS (2006) New functions for amino acids: effects on gene transcription and translation. Am J Clin Nutr 83:500S–507SPubMedGoogle Scholar
  41. Ko TC, Beauchamp RD, Townsend CM Jr, Thompson JC (1993) Glutamine is essential for epidermal growth factor-stimulated intestinal cell proliferation. Surgery 114:147–153PubMedGoogle Scholar
  42. Ko YG, Kim EY, Kim T et al (2001) Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1. J Biol Chem 276:6030–6036PubMedCrossRefGoogle Scholar
  43. Kozar RA, Verner-Cole E, Schultz SG et al (2004) The immune-enhancing enteral agents arginine and glutamine differentially modulate gut barrier function following mesenteric ischemia/reperfusion. J Trauma 57:1150–1156PubMedCrossRefGoogle Scholar
  44. Krane SM (2008) The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids 35:703–710PubMedCrossRefGoogle Scholar
  45. Kwon H, Spencer TE, Bazer FW, Wu G (2003) Developmental changes of amino acids in ovine fetal fluids. Biol Reprod 68:1813–1820PubMedCrossRefGoogle Scholar
  46. Larson SD, Li J, Chung DH, Evers BM (2007) Molecular mechanisms contributing to glutamine-mediated intestinal cell survival. Am J Physiol Gastrointest Liver Physiol 293:G1262–G1271PubMedCrossRefGoogle Scholar
  47. Lenaerts K, Renes J, Bouwman FG et al (2007) Arginine deficiency in preconfluent intestinal Caco-2 cells modulates expression of proteins involved in proliferation, apoptosis, and heat shock response. Proteomics 7:565–577PubMedCrossRefGoogle Scholar
  48. Lentze MJ (1989) Intestinal adaptation in short-bowel syndrome. Eur J Pediatr 148:294–299PubMedCrossRefGoogle Scholar
  49. Li N, Lewis P, Samuelson D et al (2004) Glutamine regulates Caco-2 cell tight junction proteins. Am J Physiol Gastrointest Liver Physiol 287:G726–G733PubMedCrossRefGoogle Scholar
  50. Liao XH, Majithia A, Huang X, Kimmel AR (2008) Growth control via TOR kinase signaling, an intracellular sensor of amino acid and energy availability, with crosstalk potential to proline metabolism. Amino Acids 35:761–770PubMedCrossRefGoogle Scholar
  51. Liu L, Chen L, Chung J, Huang S (2008) Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene 27:4998–5010PubMedCrossRefGoogle Scholar
  52. Luo CC, Chen HM, Chiu CH et al (2001) Effect of N(G)-nitro-l-arginine methyl ester on intestinal permeability following intestinal ischemia-reperfusion injury in a rat model. Biol Neonate 80:60–63PubMedCrossRefGoogle Scholar
  53. Martín-Rufián M, Segura JA, Lobo C et al (2006) Identification of genes downregulated in tumor cells expressing antisense glutaminase mRNA by differential display. Cancer Biol Ther 5:54–58PubMedCrossRefGoogle Scholar
  54. McCormack SA, Johnson LR (1991) Role of polyamines in gastrointestinal mucosal growth. Am J Physiol 260:G795–G806PubMedGoogle Scholar
  55. Nakajo T, Yamatsuji T, Ban H et al (2005) Glutamine is a key regulator for amino acid-controlled cell growth through the mTOR signaling pathway in rat intestinal epithelial cells. Biochem Biophys Res Commun 326:174–180PubMedCrossRefGoogle Scholar
  56. Naomoto Y, Yamatsuji T, Shigemitsu K et al (2005) Rational role of amino acids in intestinal epithelial cells. Int J Mol Med 16:201–204PubMedGoogle Scholar
  57. Noiri E, Peresleni T, Srivastava N et al (1996) Nitric oxide is necessary for a switch from stationary to locomoting phenotype in epithelial cells. Am J Physiol 270:C794–C802PubMedGoogle Scholar
  58. Noiri E, Lee E, Testa J et al (1998) Podokinesis in endothelial cell migration: role of nitric oxide. Am J Physiol 274:C236–C244PubMedGoogle Scholar
  59. Novak F, Heyland DK, Avenell A et al (2002) Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med 30:2022–2029PubMedCrossRefGoogle Scholar
  60. O’Dwyer ST, Smith RJ, Hwang TL, Wilmore DW (1989) Maintenance of small bowel mucosa with glutamine-enriched parenteral nutrition. J Parenter Enteral Nutr 13:579–585CrossRefGoogle Scholar
  61. Palii SS, Kays CE, Deval C et al. (2008) Specificity of amino acid regulated gene expression: analysis of genes subjected to either complete or single amino acid deprivation. Amino Acids. doi: 10.1007/s00726-008-0199-2
  62. Papaconstantinou HT, Chung DH, Zhang W et al (2000) Prevention of mucosal atrophy: role of glutamine and caspases in apoptosis in intestinal epithelial cells. J Gastrointest Surg 4:416–423PubMedCrossRefGoogle Scholar
  63. Peng ZY, Serkova NJ, Kominsky DJ et al (2006) Glutamine-mediated attenuation of cellular metabolic dysfunction and cell death after injury is dependent on heat shock factor-1 expression. J Parenter Enteral Nutr 30:373–378CrossRefGoogle Scholar
  64. Phanvijhitsiri K, Musch MW, Ropeleski MJ, Chang EB (2006) Heat induction of heat shock protein 25 requires cellular glutamine in intestinal epithelial cells. Am J Physiol Cell Physiol 291:C290–C299PubMedCrossRefGoogle Scholar
  65. Poindexter BB, Ehrenkranz RA, Stoll BJ et al (2003) Effect of parenteral glutamine supplementation on plasma amino acid concentrations in extremely low-birth-weight infants. Am J Clin Nutr 77:737–743PubMedGoogle Scholar
  66. Potsic B, Holliday N, Lewis P et al (2002) Glutamine supplementation and deprivation: effect on artificially reared rat small intestinal morphology. Pediatr Res 52:430–436PubMedGoogle Scholar
  67. Rhoads JM, Keku EO, Quinn J et al (1991) l-Glutamine stimulates jejunal sodium and chloride absorption in pig rotavirus enteritis. Gastroenterology 100:683–691PubMedGoogle Scholar
  68. Rhoads JM, Argenzio RA, Chen W et al (1997) l-Glutamine stimulates intestinal cell proliferation and activates mitogen-activated protein kinases. Am J Physiol 272:G943–G953PubMedGoogle Scholar
  69. Rhoads JM, Argenzio RA, Chen W et al (2000) Glutamine metabolism stimulates intestinal cell MAPKs by a cAMP-inhibitable, Raf-independent mechanism. Gastroenterology 118:90–100PubMedCrossRefGoogle Scholar
  70. Rhoads JM, Chen W, Gookin J et al (2004) Arginine stimulates intestinal cell migration through a focal adhesion kinase dependent mechanism. Gut 53:514–522PubMedCrossRefGoogle Scholar
  71. Rhoads JM, Niu X, Odle J, Graves LM (2006) Role of mTOR signaling in intestinal cell migration. Am J Physiol Gastrointest Liver Physiol 291:G510–G517PubMedCrossRefGoogle Scholar
  72. Rhoads JM, Corl BA, Harrell R et al (2007) Intestinal ribosomal p70(s6k) signaling is increased in piglet rotavirus enteritis. Am J Physiol Gastrointest Liver Physiol 292:G913–G922PubMedCrossRefGoogle Scholar
  73. Rhoads JM, Liu Y, Niu X et al (2008) Arginine stimulates cdx2-transformed intestinal epithelial cell migration via a mechanism requiring both nitric oxide and phosphorylation of p70 s6kinase. J Nutr 138:1652–1657PubMedGoogle Scholar
  74. Ropeleski MJ, Riehm J, Baer KA et al (2005) Anti-apoptotic effects of l-glutamine-mediated transcriptional modulation of the heat shock protein 72 during heat shock. Gastroenterology 129:170–184PubMedCrossRefGoogle Scholar
  75. Sato N, Moore FA, Kone BC et al (2006) Differential induction of PPAR-gamma by luminal glutamine and iNOS by luminal arginine in the rodent postischemic small bowel. Am J Physiol Gastrointest Liver Physiol 290:G616–G623PubMedCrossRefGoogle Scholar
  76. Seth A, Basuroy S, Sheth P, Rao RK (2004) l-Glutamine ameliorates acetaldehyde-induced increase in paracellular permeability in Caco-2 cell monolayer. Am J Physiol Gastrointest Liver Physiol 287:G510–G517PubMedCrossRefGoogle Scholar
  77. Siu F, Bain PJ, LeBlanc-Chaffin R et al (2002) ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem 277:24120–24127PubMedCrossRefGoogle Scholar
  78. Stebbing JF, Brading AF, Mortensen NJ (1996) Nitrergic innervation and relaxant response of rectal circular smooth muscle. Dis Colon Rectum 39:294–299PubMedCrossRefGoogle Scholar
  79. Stoll B, Burrin DG (2006) Measuring splanchnic amino acid metabolism in vivo using stable isotopic tracers. J Anim Sci 84(Suppl):E60–E72PubMedGoogle Scholar
  80. Suryawan A, O’Connor PMJ, Bush JA et al. (2008) Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids. doi:10.1007/s00726-008-0149-z
  81. Tan BE, Yin YL, Liu ZQ et al. (2008) Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids. doi:10.1007/s00726-008-0148-0
  82. Uehara K, Takahashi T, Fujii H et al (2005) The lower intestinal tract-specific induction of heme oxygenase-1 by glutamine protects against endotoxemic intestinal injury. Crit Care Med 33:381–390PubMedCrossRefGoogle Scholar
  83. Wang WW, Qiao SY, Li DF (2008a) Amino acids and gut function. Amino Acids. doi:10.1007/s00726-008-0152-4
  84. Wang JJ, Chen LX, Li P et al (2008b) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032PubMedGoogle Scholar
  85. Wang JJ, Wu G, Zhou HJ, Wang FL (2008c) Emerging technologies for amino acid nutrition research in the post-genome era. Amino Acids. doi:10.1007/s00726-008-0193-8
  86. Windmueller HG, Spaeth AE (1978) Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. J Biol Chem 253:69–76PubMedGoogle Scholar
  87. Windmueller HG, Spaeth AE (1980) Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. Quantitative importance of glutamine, glutamate, and aspartate. J Biol Chem 255:107–112PubMedGoogle Scholar
  88. Wischmeyer PE, Musch MW, Madonna MB et al (1997) Glutamine protects intestinal epithelial cells: role of inducible HSP70. Am J Physiol 272:G879–G884PubMedGoogle Scholar
  89. Wischmeyer PE, Kahana M, Wolfson R et al (2001) Glutamine induces heat shock protein and protects against endotoxin shock in the rat. J Appl Physiol 90:2403–2410PubMedGoogle Scholar
  90. Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252PubMedGoogle Scholar
  91. Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrum and milk. J Nutr 124:415–424PubMedGoogle Scholar
  92. Wu G, Knabe DA (1995) Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol Regul Integr Comp Physiol 269:R621–R629Google Scholar
  93. Wu G, Meininger CJ (2000) Arginine nutrition and cardiovascular function. J Nutr 130:2626–2629PubMedGoogle Scholar
  94. Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17PubMedGoogle Scholar
  95. Wu G, Knabe DA, Yan W, Flynn NE (1995) Glutamine and glucose metabolism in enterocytes of neonatal pigs. Am J Physiol Regul Integr Comp Physiol 268:R334–R342Google Scholar
  96. Wu G, Bazer FW, Tuo W, Flynn SP (1996a) Unusual abundance of arginine and ornithine in porcine allantoic fluid. Biol Reprod 54:1261–1265PubMedCrossRefGoogle Scholar
  97. Wu G, Meier SA, Knabe DA (1996b) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584PubMedGoogle Scholar
  98. Wu G, Haynes TE, Li H et al (2001) Glutamine metabolism to glucosamine is necessary for glutamine inhibition of endothelial nitric oxide synthesis. Biochem J 353:245–252PubMedCrossRefGoogle Scholar
  99. Wu G, Bazer FW, Davis TA et al (2007a) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22CrossRefGoogle Scholar
  100. Wu G, Bazer FW, Cudd TA et al (2007b) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680SPubMedGoogle Scholar
  101. Wu G, Bazer FW, Datta S et al (2008a) Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35:691–702PubMedCrossRefGoogle Scholar
  102. Wu G, Bazer FW, Davis TA et al. (2008b) Arginine metabolism and nutrition in growth, health and disease. Amino Acids. doi: 10.1007/s00726-008-0210-y
  103. Yang F, Wang JJ, Li XJ et al (2007) Two-dimensional gel electrophoresis and mass spectrometry analysis of interactions between Lactobacillus Fermentum I5007 and intestinal epithelial cells. Electrophoresis 28:4330–4339PubMedCrossRefGoogle Scholar
  104. Zamora SA, Amin HJ, McMillan DD et al (1997) Plasma l-arginine concentrations in premature infants with necrotizing enterocolitis. J Pediatr 131:226–232PubMedCrossRefGoogle Scholar
  105. Zamora R, Bryan NS, Boyle P et al (2005) Nitrosative stress in an animal model of necrotizing enterocolitis. Free Radic Biol Med 39:1428–1437PubMedCrossRefGoogle Scholar
  106. Ziegler TR, Mantell MP, Chow JC et al (1996) Gut adaptation and the insulin-like growth factor system: regulation by glutamine and IGF-I administration. Am J Physiol 271:G866–G875PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of Texas Medical School at HoustonHoustonUSA
  2. 2.Department of Animal ScienceTexas A&M UniversityCollege StationUSA

Personalised recommendations