Skip to main content

Advertisement

Log in

New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Recent evidence shows that some amino acids and their metabolites are important regulators of key metabolic pathways that are necessary for maintenance, growth, feed intake, nutrient utilization, immunity, behavior, larval metamorphosis, reproduction, as well as resistance to environmental stressors and pathogenic organisms in various fishes. Therefore, conventional definitions on essential and nonessential amino acids for fish are challenged by numerous discoveries that taurine, glutamine, glycine, proline and hydroxyproline promote growth, development, and health of aquatic animals. On the basis of their crucial roles in cell metabolism and physiology, we anticipate that dietary supplementation with specific amino acids may be beneficial for: (1) increasing the chemo-attractive property and nutritional value of aquafeeds with low fishmeal inclusion; (2) optimizing efficiency of metabolic transformation in juvenile and sub-adult fishes; (3) surpressing aggressive behaviors and cannibalism; (4) increasing larval performance and survival; (5) mediating timing and efficiency of spawning; (6) improving fillet taste and texture; and (7) enhancing immunity and tolerance to environmental stresses. Functional amino acids hold great promise for development of balanced aquafeeds to enhance the efficiency and profitability of global aquaculture production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AA:

Amino acids

GABA:

γ-Aminobutyrate

BCAA:

Branched-chain amino acids

HMB:

Hydroxyl-β-methyl-butyrate

NAC:

N-Acetyl-cysteine

NO:

Nitric oxide

NOS:

Nitric oxide synthase

P5C:

Pyrroline-5-carboxylate

T3:

Triiodothyronine

T4:

Thyroxine

References

  • Aas-Hansen O, Vijayan MM, Johnsen HK, Cameron C, Jorgensen EH (2005) Resmoltification in wild, anadromous Arctic char (Salvelinus etabol): a survey of osmoregulatory, metabolic, and endocrine changes preceding annual seaward migration. Can J Fish Aquat Sci 62:195–204

    Article  CAS  Google Scholar 

  • Aksnes A, Mundheim H, Toppe J, Albrektsen S (2008) The effect of dietary hydroxyproline supplementation on salmon (Salmo salar L.) fed high plant protein diets. Aquaculture 275:242–249

    Article  CAS  Google Scholar 

  • Amano M, Iigo M, Ikuta K, Kitamura S, Okuzawa K, Yamada H, Yamamori K (2004) Disturbance of plasma melatonin profile by high dose melatonin administration inhibits testicular maturation of precocious male masu salmon. Zool Sci 24:79–85

    Article  Google Scholar 

  • Anderson PM, Broderius MA, Fong KC, Tsui KNT, Chew SF, Ip YK (2002) Glutamine synthetase expression in liver, muscle, stomach and intestine of Bostrichthys sinensis in response to exposure to a high exogenous ammonia concentration. J Exp Biol 205:2053–2065

    PubMed  CAS  Google Scholar 

  • Aragão C, Corte-Real J, Costas B, Dinis MT, Conceição LEC (2008) Stress response and changes in amino acid requirements in Senegalese sole (Solea senegalensis Kaup 1858). Amino Acids 34:143–158

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya S, Chattoraj A, Maitra SK (2007) Melatonin in the regulation of annual testicular events in carp catla catla: evidence from the studies on the effects of exogenous melatonin, continuous light, and continuous darkness. Chronobiol Int 24:629–650

    Article  PubMed  CAS  Google Scholar 

  • Boonanuntanasarn S, Yoshizaki G, Iwai K, Takeuchi T (2004) Molecular cloning, gene expression in albino mutants and gene knockdown studies of tyrosinase mRNA in rainbow trout. Pigment Cell Res 17:413–421

    Article  PubMed  CAS  Google Scholar 

  • Bordieri L, di Patti MCB, Miele R, Cioni C (2005) Partial cloning of neuronal nitric oxide synthase (nNOS) cDNA and regional distribution of nNOS mRNA in the central nervous system of the Nile tilapia Oreochromis niloticus. Mol Brain Res 142:123–133

    Article  PubMed  CAS  Google Scholar 

  • Britz PJ, Bacela N, Hecht T (1997) Can crystalline arginine be used to quantify the arginine requirement of abalone? Aquaculture 157:95–105

    Article  CAS  Google Scholar 

  • Buentello JA, Gatlin DM (1999) Nitric oxide production in activated macrophages from channel catfish (Ictalurus punctatus): influence of dietary arginine and culture media. Aquaculture 179:513–521

    Article  CAS  Google Scholar 

  • Buentello JA, Gatlin DM (2000) The dietary arginine requirement of channel catfish (Ictalurus punctatus) is influenced by endogenous synthesis of arginine from glutamic acid. Aquaculture 188:311–321

    Article  CAS  Google Scholar 

  • Buentello JA, Gatlin DM (2001) Effects of elevated dietary arginine on resistance of channel catfish to exposure to Edwardsiella ictaluri. J Aquat Animal Health 13:194–201

    Article  Google Scholar 

  • Buentello JA, Gatlin DM (2002) Preliminary observations on the effects of water hardness on free taurine and other amino acids in plasma and muscle of channel catfish. North Am J Aquac 64:95–102

    Article  Google Scholar 

  • Bystriansky JS, Frick NT, Ballantyne JS (2007) Intermediary metabolism of Arctic char Salvelinus etabol during short-term salinity exposure. J Exp Biol 210:1971–1985

    Article  PubMed  CAS  Google Scholar 

  • Csapó J, Varga-Visi Ė, Lóki K, Albert CS, Salamon SZ (2008) The influence of extrusion on loss and racemization of amino acids. Amino Acids 34:287–292

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, Wu ZR, Kuo CM, Cheng W (2007) Dopamine depress immunity of tiger shrimp Penaeus Monodon. Fish Shellfish Immunol 24:24–33

    Article  CAS  Google Scholar 

  • Cheng ZJ, Hardy RW, Usry JL (2003) Plant protein ingredients with lysine supplementation reduce dietary protein levels in rainbow trout Oncorhynchus mykiss diets, and reduce ammonia nitrogen and phosphorus excretion. Aquaculture 218:553–565

    Article  CAS  Google Scholar 

  • Choo P, Smith TK, Cho CY, Ferguson HW (1991) Dietary excesses of leucine influence growth and body composition of rainbow trout. J Nutr 121:1932–1939

    PubMed  CAS  Google Scholar 

  • Cowey CB, Cho CY (1992) Failure of dietary putrescine to enhance the growth of rainbow trout (Oncorhynnchus mykiss). Can J Fish Aquat Sci 94:2473–2496

    Google Scholar 

  • Dabrowski K, Terjesen BF, Zhang YF, Phang JM, Lee KJ (2005) A concept of dietary dipeptides: a step to resolve the problem of amino acid availability in the early life of vertebrates. J Exp Biol 208:2885–2894

    Article  PubMed  CAS  Google Scholar 

  • Damasceno-Oliveira A, Fernandez-Duran B, Goncalves J, Serrao P, Soares-da-Silva P, Reis-Henriques MA, Coimbra J (2007) Effects of cyclic hydrostatic pressure on the brain biogenic amines concentrations in the flounder, Platichthys flesus. Gen Comp Endocrinol 153:385–389

    Article  PubMed  CAS  Google Scholar 

  • Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 8:872–879

    Article  Google Scholar 

  • Førde-Skjærvik O, Skjærvik O, Mørkøre T, Thomassen MS, Rørvik KA (2006) Dietary influence on quality of farmed Atlantic cod (Gadus morhua): effect on glycolysis and buffering capacity in white muscle. Aquaculture 252:409–420

    Article  CAS  Google Scholar 

  • Garg SK (2007) Effect of oral administration of l–thyroxine (T4) on growth performance, digestibility, and nutrient retention in Channa punctatus (Bloch) and Heteropneustes fossilis (Bloch). Fish Biochem Physiol 33:347–358

    Article  CAS  Google Scholar 

  • Gaylord TG, Barrows FT, Teague AM, Johansen KA, Overturf KE, Shephed B (2007) Supplementation of taurine and methionine to all-plant protein diets for rainbow trout (Oncorhynchus mykiss). Aquaculture 269:514–524

    Article  CAS  Google Scholar 

  • Gouillou-Coustans MF, Fournier V, Métailler R, Vachot C, Desbruyères E, Huelvan C, Moriceau J, Le Delliou H, Kaushik SJ (2002) Dietary arginine degradation is a major pathway in ureagenesis in turbot (Psetta Maxima). Comp Biochem Physiol A 132:305–319

    Article  CAS  Google Scholar 

  • Galli F (2007) Amino acid and protein modification by oxygen and nitrogen species. Amino Acids 32:497–499

    Article  CAS  Google Scholar 

  • Grillo MA, Colombatto S (2007) S-Adenosylmethionine and radical-based catalysis. Amino Acids 32:197–202

    Article  PubMed  CAS  Google Scholar 

  • Harpaz S (2005) l-Carnitine and its attributed functions in fish culture and nutrition—a review. Aquaculture 249:3–21

    Article  CAS  Google Scholar 

  • Höglund E, Sorensen C, Bakke MJ, Nilsson GE, Øverli Ø (2007) Attenuation of stress-induced anorexia in brown trout (Salmo trutta) by pre-treatment with dietary l-tryptophan. Br J Nutr 97:786–789

    Article  PubMed  CAS  Google Scholar 

  • Hseu JR, Lu FI, Su HM, Wang LS, Tsai CL, Hwang PP (2003) Effect of exogenous tryptophan on cannibalism, survival and growth in juvenile grouper, Epinephelus coioides. Aquaculture 218:251–263

    Article  CAS  Google Scholar 

  • Hyndman KA, Choe KP, Havird JC, Rose RE, Piermarini PM, Evans DH (2006) Neuronal nitric oxide synthase in the gill of killifish (Fundulus heteroclitus). Comp Biochem Physiol B 144:510–519

    Article  PubMed  CAS  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  PubMed  CAS  Google Scholar 

  • Keembiyehetty CN, Gatlin DM (1995) Evaluation of different sulfur-compounds in the diet of juvenile sunshine bass (Morone chrysops × M. saxatillis). Comp Biochem Physiol A 112:155–159

    Article  Google Scholar 

  • Kim SK, Takeuchi T, Yokoyama M, Murata Y (2003) Effect of dietary supplementation with taurine, β-alanine, and GABA on the growth of juvenile and fingerling Japanese flounder Paralichthys olivaceus. Fish Sci 69:242–248

    Article  CAS  Google Scholar 

  • Kim SK, Matsunari H, Takeuchi T, Yokoyama M, Furuita H, Murata Y, Goto T (2008) Comparison of taurine biosynthesis ability between juveniles of Japanese flounder and common carp. Amino Acids 35:161–168

    Article  PubMed  CAS  Google Scholar 

  • Lepage O, Tottmar O, Winberg S (2003) Elevated dietary intake of l-tryptophan counteracts the stress-induced elevation of plasma cortisol in rainbow trout (Oncorhynchus mykiss). J Exp Biol 205:3679–3687

    Google Scholar 

  • Li P, Gatlin DM (2006) Nucleotide nutrition in fish: current knowledge and future applications. Aquaculture 251:141–152

    Article  CAS  Google Scholar 

  • Li P, Gatlin DM (2007) Evaluation of dietary supplementation of β-hydroxy-β-methylbutyrate for hybrid striped bass Morone chrysops × Morone saxatilis. J Appl Aquac 19:77–88

    Article  Google Scholar 

  • Li P, Yin Y, Li D, Kim WK, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Zhou X (2006) Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 256:389–394

    Article  CAS  Google Scholar 

  • Mai K, Zhang L, Ai Q, Duan Q, Zhang C, Li H, Wan J, Liufu Z (2006a) Dietary lysine requirement of juvenile seabass (Lateolabrax japonicas). Aquaculture 258:535–542

    Article  CAS  Google Scholar 

  • Mai K, Wan J, Ai Q, Xu W, Liufu Z, Zhang L, Zhang C, Li H (2006b) Dietary methionine requirement of juvenile yellow croaker Pseudosciaena crocea R. Aquaculture 251:564–572

    Article  CAS  Google Scholar 

  • Mannick JB (2007) Regulation of apoptosis by protein S-nitrosylation. Amino Acids 32:523–526

    Article  PubMed  CAS  Google Scholar 

  • Milligan CL (1997) The role of cortisol in amino acid mobilization and metabolism following exhaustive exercise in rainbow trout (Oncorhychus mykiss Walbaum). Fish Physiol Biochem 16:119–128

    Article  CAS  Google Scholar 

  • Mommsen TP, French CJ, Hochachka PW (1980) Sites and patterns of protein and amino acid utilization during the spawning migration of salmon. Can J Zool 58:1785–1799

    Article  CAS  Google Scholar 

  • Mommsen TP, Moon TW, Plisetskaya EM (2001) Effects on arginine on pancreatic hormones and hepatic metabolism in rainbow trout. Physiol Biochem Zool 74:668–678

    Article  PubMed  CAS  Google Scholar 

  • Morse DE, Hooker N, Duncan H, Jensen L (1979) γ-Aminobutyric acid, a neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis. Science 204:407

    Article  PubMed  CAS  Google Scholar 

  • Murai T, Akiyama T, Ogata H, Hirasawa Y, Nose T (1982) Effect of coating amino acids with casein supplemented to gelatin diet on plasma free amino acids of carp. Bull Jpn Sot Sci Fish 48:03–710

    Google Scholar 

  • Nakashima K, Yakabe Y, Ishida A, Yamazaki M, Abe H (2007) Suppression of myofibrillar proteolysis in chick skeletal muscles by α-ketoisocaproate. Amino Acids 33:499–503

    Article  PubMed  CAS  Google Scholar 

  • Ogata HY (2002) Muscle buffering capacity of yellowtail fed diets supplemented with crystalline histidine. J Fish Biol 61:1504–1512

    Article  CAS  Google Scholar 

  • Olin T, Bergstrom E, Jungvid H, Vonderdecken A (1992) Effect of dietary keto acids on intermediary metabolism of nutrients in Atlantic salmon (Salmo salar) during 17-β estrodial induced vitellogenin synthesis. Acta Agric Scandinavica A 42:246–253

    CAS  Google Scholar 

  • Omura Y, Inagaki M (2000) Immunocytochemical localization of taurine in the fish retina under light and dark adaptations. Amino Acids 19:593–604

    Article  PubMed  CAS  Google Scholar 

  • Ou DY, Li DF, Cao YH, Li XL, Yin JD, Qiao SY, Wu G (2007) Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs. J Nutr Biochem 18:820–826

    Article  PubMed  CAS  Google Scholar 

  • Péres A, Cahu CL, Zambonino-Infante JL (1997) Dietary spermine supplementation induces intestinal maturation in sea bass (Dicentrarchus labrax) larvae. Fish Biochem Physiol 16:479–485

    Article  Google Scholar 

  • Phang JM, Donald SP, Pandhare J, Liu Y (2008) The metabolism of proline, as a stress substrate, modulates carcinogenic pathways. Amino Acids. doi:10.1007/s00726-008-0063-4

  • Pinto W, Figueira L, Dinis MT, Aragão C (2008) How does fish metamorphosis affect aromatic amino acid metabolism? Amino Acids doi:10.1007/s00726-008-0045-6

  • Powell EN, Kasschau M, Chen E, Koenig M, Pecon J (1982) Changes in free amino acid pool during environmental stress in the gill of the oyster Crassostrea Virginica. Comp Biochem Physiol 71A:591–598

    Article  CAS  Google Scholar 

  • Powell MD, Ransome J, Barney M, Duijf RMM, Flik G (2007) Effect of dietary inclusion of n-acetyl cysteine on mucus viscosity and susceptibility of rainbow trout, Oncorhynchus mykiss, and Atlantic salmon, Salmo salar, to amoebic gill disease. J World Aquac Soc 38:435–442

    Article  Google Scholar 

  • Riley WW, Higgs DA, Dosanjh BS, Eales JG (1996) Influence of dietary arginine and glycine content on thyroid function and growth of juvenile rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac Nutr 2:235–242

    Article  CAS  Google Scholar 

  • Rubio VC, Sánchez-Vázquez FJ, Madrid JA (2006) Oral serotonin administration affects the quantity and the quality of macronutrient selection in European sea bass (Dicentrarchus labrax L.). Physiol Behav 87:7–15

    Article  PubMed  CAS  Google Scholar 

  • Saavedra M, Conceição LEC P, Pousão-Ferreira P, Dinis MT (2008) Metabolism of tryptophan, methionine and arginine in Diplodus sargus larvae fed rotifers: effect of amino acid supplementation. Amino Acids 35:59–64

    Article  PubMed  CAS  Google Scholar 

  • Salze G, Craig SR, Schwarz M, McLean E (2008) Novel live feed enrichments beneficially impact digestive ongogeny in larval cobia Rachycentron candadum. Abstract of Aquaculture America 08, p 337

    Google Scholar 

  • Shamushaki VAJ, Kasumyan AO, Abedian A, Abtahi B (2007) Behavioural responses of the Persian sturgeon (Acipenser persicus) juveniles to free amino acid solutions. Mar Fresh Behav Physiol 40:219–224

    Article  CAS  Google Scholar 

  • Silvia G, Antonio UA, Francisco U, Georgina H (2002) Ammonia efflux rates and free amino acid levels in Litopenaeus vannamei postlarvae during sudden salinity changes. Aquaculture 233:573–581

    Article  CAS  Google Scholar 

  • Siwicki AK, Morand M, Fuller JC, Nissen S, Goryczko K, Ostaszewski P, Kazun K, Glompski E (2003) Influence of feeding the leucine etabolite β-hydroxy β-methyl butyrate (HMB) on the non-specific cellular and humoral defence mechanisms of rainbow trout (Oncorhynchus mykiss). J Appl Ichthyol 19:44–48

    Article  CAS  Google Scholar 

  • Snyder GS, Gaylord TG, Barrows FT, Hardy RW (2008) Carnosine supplementation on an all-plant protein diet for rainbow trout Oncorhynchus mykiss. Abstract of Aquaculture America 08, p 369

    Google Scholar 

  • Sunde J, Taranger GL, Rungruangsak-Torrissen K (2001) Digestive protease activities and free amino acids in white muscle as indicators for feed conversion efficiency and growth rate in Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 25:335–345

    Article  Google Scholar 

  • Szebedinszky C, Gilmour KM (2002) The buffering power of plasma in brown bullhead (Ameiurus nebulosus). Comp Biochem Physiol B 131:171–183

    Article  PubMed  Google Scholar 

  • Takeuchi T (2007) Amino acids, Peptides. In: Nakagawa H, Sato M, Gatlin DM (eds) Dietary supplements for the health and quality of cultured fish. CAB International, Oxon, UK, pp 47–63

    Google Scholar 

  • Tapia-Salazar M, Cruz-Suarez LE, Ricque-Marie D, Pike IH, Smith TK, Harris A, Nygard E, Opstvedt J (2004) Effect of fishmeal made of stale or fresh herring and added crystalling biogenic amines on growth and survival of blue shrimp Litopenaeus stylirostris fed practical diets. Aquaculture 242:437–453

    Article  CAS  Google Scholar 

  • Toyohara H, Ito K, Touhata K, Kinoshita M, Kubota S, Sato K, Ohtsuki K, Sakaguchi M (1997) Effect of maturation on the free or bound forms of hydroxyproline of ayu muscle. Fish Sci 63:843–844

    CAS  Google Scholar 

  • Trushenski JT, Kasper CS, Kohler CC (2006) Challenges and opportunities in finfish nutrition. North Am J Aquac 68:122–140

    Article  Google Scholar 

  • Vijayan MM, Mommsen TP, Glémet HC, Moon TW (1996) Metabolic effects of cortisol treatment in marine teleost, the sea raven. J Exp Biol 199:1509–1514

    PubMed  CAS  Google Scholar 

  • Wilson RP (2002) Protein and amino acids. In: Halver JE, Hardy RW (eds) Fish Nutrition, 3rd version. Elsevier Science, San Diego, USA, pp 144–179

    Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Jaeger LA, Johnson GA, Kim SW, Knabe DA, Meininger CJ, Spencer TE, Yin YL (2007) Important roles of the arginine family amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Datta S, Johnson GA, Li P, Satterfield MC, Spencer TE (2008) Proline metabolism in the conceptus: Implications for fetal growth and development. Amino Acids. doi:10.1007/s00726-008-0052-7

  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    PubMed  CAS  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  • Wu G, Thompson JR (1989) Methionine transamination and glutamine transaminases in skeletal muscle. Biochem J 262:690–691

    CAS  Google Scholar 

  • Yao K, Yin YL, Chu W, Liu Z, Deng D, Li T, Huang R, Zhang J, Tan B, Wang W, Wu G (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    PubMed  CAS  Google Scholar 

  • Yoo JH, Takeuchi T, Tagawa M, Seikai T (2000) Effect of thyroid hormones on the stage-specific pigmentation of the Japanese flounder Paralichthys olivaceus. Zool Sci 17:1101–1106

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Dabrowski K, Hliwa P, Gomulka P (2006) Indispensable amino acid concentrations decrease in tissues of stomachless fish, common carp in response to free amino acid- or peptide-based diets. Amino Acids 31:165–172

    Article  PubMed  CAS  Google Scholar 

  • Zhou X (2005) Use of synthetic lysine in fish feeds: a review on research and application. Feed Ind 27:1–7

    Google Scholar 

Download references

Acknowledgments

We thank Drs. Joe Fox and Gibson Gaylord for helpful comments on this work, as well as Frances Mutscher for office support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Mai, K., Trushenski, J. et al. New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids 37, 43–53 (2009). https://doi.org/10.1007/s00726-008-0171-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0171-1

Keywords

Navigation