Skip to main content
Log in

RETRACTED ARTICLE: Taurine plays a beneficial role against cadmium-induced oxidative renal dysfunction

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

This article was retracted on 20 March 2024

This article has been updated

Abstract

The present study has been carried out to investigate the role of taurine (2-aminoethanesulfonic acid), a conditionally essential amino acid, in ameliorating cadmium-induced renal dysfunctions in mice. Cadmium chloride (CdCl2) has been selected as the source of cadmium. Intraperitoneal administration of CdCl2(at a dose of 4 mg/kg body weight for 3 days) caused significant accumulation of cadmium in renal tissues and lessened kidney weight to body weight ratio. Cadmium administration reduced intracellular ferric reducing/antioxidant power (FRAP) of renal tissues. Levels of serum marker enzymes related to renal damage, creatinine and urea nitrogen (UN) have been elevated due to cadmium toxicity. Cadmium exposure diminished the activities of enzymatic antioxidants, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PD) as well as non-enzymatic antioxidant, reduced glutathione (GSH) and total thiols. On the other hand, the levels of oxidized glutathione (GSSG), lipid peroxidation, protein carbonylation, DNA fragmentation, concentration of superoxide radicals and activities of cytochrome P450 enzymes (CYP P450s) have been found to increase due to cadmium intoxication. Treatment with taurine (at a dose of 100 mg/kg body weight for 5 days) before cadmium intoxication prevented the toxin-induced oxidative impairments in renal tissues. The beneficial role of taurine against cadmium-induced renal damage was supported from histological examination of renal segments. Vitamin C, a well-established antioxidant was used as the positive control in the study. Experimental evidence suggests that both taurine and vitamin C provide antioxidant defense against cadmium-induced renal oxidative injury. Combining all, results suggest that taurine protects murine kidneys against cadmium-induced oxidative impairments, probably via its antioxidative property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

Abbreviations

BSA:

Bovine serum albumin

CdCl2 :

Cadmium chloride

CDNB:

1-Chloro-2,4-dinitrobenzene

DNPH:

2,4-Dinitro phenyl hydrazine

DTNB:

5,5′-Dithiobis(2-nitrobenzoic acid) [Ellman’s reagent]

EDTA:

Ethylene diamine tetraacetic acid

FeCl3 :

Ferric chloride

FRAP:

Ferric reducing/antioxidant power

GSH:

Glutathione

GSSG:

Glutathione disulfide

H2O2 :

Hydrogen peroxide

MDA:

Malonaldehyde

NEM:

N-ethylmaleimide

NADH:

Nicotinamide adenine dinucleotide reduced disodium salt

NBT:

Nitro blue tetrazolium chloride

PMT:

Phenazine methosulphate

ROS:

Reactive oxygen species

NaN3 :

Sodium azide

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

TPTZ:

2,4,6-Tripyridyl-1,3,5-triazine

UN:

Urea nitrogen

References

  • Ahn DW, Kim MY, Kim KR, Park YS (1999) Cadmium binding and sodium dependent solute transport in renal brush border membrane vesicles. Toxicol Appl Pharmacol 154:212–218

    Article  CAS  PubMed  Google Scholar 

  • Aruoma OI, Halliwell B, Hoey BM, Butler J (1988) The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 256:251–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrera D et al (2003) HO-I induction attenuates renal damage and oxidative stress induced by K2Cr2O7. Free Radic Biol Med 34:1390–1398

    Article  CAS  PubMed  Google Scholar 

  • Bauman JW, Liu J, Klaassen CD (1993) Production of metalothionein and heat-shock proteins in response to metals. Fundam Appl Toxicol 21:15–22

    Article  CAS  PubMed  Google Scholar 

  • Benzie IFF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27

    Article  CAS  PubMed  Google Scholar 

  • Beyersmann D, Hechtenberg S (1997) Cadmium, gene regulation, and cellular signaling in mammalian cells. Toxicol Appl Pharmacol 144:247–261

    Article  CAS  PubMed  Google Scholar 

  • Bonaventura J, Schroeder WA, Fang S (1972) Human erythrocyte catalase:an improved method of isolation and a revaluation of reported properties. Arch Biochem Biophys 150:606–617

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Casalino E, Calzaretti G, Sblano L, Landriscina C (2000) Cadmium dependent enzyme activity alteration is not imputable to lipid peroxidation. Arch Biochem Biophys 383:288–295

    Article  CAS  PubMed  Google Scholar 

  • Cozzi R, Ricordy R, Bartolini F et al (1995) Taurine and ellagic acid: two differently-acting natural antioxidants. Environ Mol Mutagen 26:248–254

    Article  CAS  PubMed  Google Scholar 

  • Dogru-Abbasoglu S, Kanbagli O, Balkan J, Cevikbas U, Aykac-Toker G, Uysal M (2001) The protective effect of taurine against thioacetamide hepatotoxicity of rats. Hum Exp Toxicol 20:23–27

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl group. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  CAS  PubMed  Google Scholar 

  • Flohe L, Gunzler WA (1984) Assay of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  CAS  PubMed  Google Scholar 

  • Fraga CG, Motchnik PA, Shigenaga MK, Helbock HJ, Jacob RA, Ames BN (1991) Ascorbic acid protects against endogenous oxidative damage in human sperm. Proc Natl Acad Sci USA 88:11003–11006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon RE, Heller RF, Heller RF (1992) Taurine protection of lungs in hamster models of oxidant injury: a morphologic time study of paraquat and bleomycin treatment. In: Lombardini JB, Schaffer SW, Azuma J (eds) Taurine: nutritional value and mechanisms of action. Plenum Press, New York, pp 319–323

    Chapter  Google Scholar 

  • Gupta P, Kar A (1998) Role of ascorbic acid in cadmium induced thyroid dysfunction and lipid peroxidation. J Appl Toxicol 18:317–320

    Article  CAS  PubMed  Google Scholar 

  • Gurer H, Ozgunes H, Saygin E, Ercal N (2001) Antioxidant effect of taurine against lead-induced oxidative stress. Arch Environ Contam Toxicol 41:397–402

    Article  CAS  PubMed  Google Scholar 

  • Gut I, Nedelcheval V, Soucek P, Stopka P, Tichavska B (1996) Cytochrome P450 in benzene metabolism and involvement of their metabolites and reactive oxygen speciesin toxicity. Environ Health Perspect 104:1211–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) Free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Wasil M, Grootveld M (1987) Biologically significant scavenging of the myeloperoxidase derived oxidant hypochlorous acid by ascorbic acid. FEBS Lett 213:15–17

    Article  CAS  PubMed  Google Scholar 

  • Hissin PJ, Hilf RA (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  PubMed  Google Scholar 

  • Hu H (2000) Exposure to metals. Primary Care 27:983–996

    Article  CAS  PubMed  Google Scholar 

  • Huxtable RJ (1992) Physiological action of taurine. Physiol Rev 72:101–163

    Article  CAS  PubMed  Google Scholar 

  • Hwang DF, Wang L, Cheng HM (1998) Effect of taurine on toxicity of copper in rats. Food Chem Toxicol 36:239–244

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZY, Hunt JV, Wolff SP (1992) Detection of lipid hydroperoxide using the FOX method. Anal Biochem 202:384–389

    Article  CAS  PubMed  Google Scholar 

  • Jin T, Nordberg M, Frech W, Dumont X, Bernard A, Ye TT, Kong Q, Wang Z, Li P, Lundstrom NG, Li Y, Nordberg GF (2002) Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China (ChinaCad). Biometals 15:397–410

    Article  CAS  PubMed  Google Scholar 

  • Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    CAS  PubMed  Google Scholar 

  • Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to pretect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294

    Article  CAS  PubMed  Google Scholar 

  • Lee CY (1982) Glucose-6-phosphate dehydrogenase from mouse. Methods Enzymol 89:252–257

    Article  CAS  PubMed  Google Scholar 

  • Lin KT, Xue JY, Sun FF, Wong PYK (1997) Reactive oxygen species participate in peroxinitrile induced apoptosis in HL 60 cells. Biochem Biophys Res Commun 230:115–119

    Article  CAS  PubMed  Google Scholar 

  • Madesh M, Balasubramanian KA (1997) A microlitre plate assay for superoxide using MTT reduction method. Indian J Biochem Biophys 34:535–539

    CAS  PubMed  Google Scholar 

  • Moskovitz J, Yim MB, Chock BP (2002) Free radicals and disease. Arch Biochem Biophys 397:354–359

    Article  CAS  PubMed  Google Scholar 

  • Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854

    Article  CAS  PubMed  Google Scholar 

  • Pari L, Murugavel P (2005) Role of diallyl tetrasulfide in ameliorating the cadmium induced biochemical changes in rats. Environ Toxicol Pharmacol 20:493–500

    Article  CAS  PubMed  Google Scholar 

  • Pari L, Murugavel P, Sitasawad SL, Kumar KS (2007) Cytoprotective and antioxidant role of diallyl tetrasulfide on cadmium induced renal injury: an in vivo and in vitro study. Life Sci 80:650–658

    Article  CAS  PubMed  Google Scholar 

  • Patrick L (2003) Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev 8:106–128

    PubMed  Google Scholar 

  • Patten CJ, Ishizaki H, Aoyama T, Lee M, Ning SM, Huang W (1992) Catalytic properties of human cytochrome P450 2E1 produced by cDNA expression in mammalian cells. Arch Biochem Biophys 299:163–171

    Article  CAS  PubMed  Google Scholar 

  • Quig D (1998) Cysteine metabolism and metal toxicity. Altern Med Rev 3:262–270

    CAS  PubMed  Google Scholar 

  • Redmond HP, Wang JH, Bouchier-Hayes D (1996) Taurine attenuates nitric oxide- and reactive oxygen intermediate-dependent hepatocyte injury. Arch Surg 131:1287–1288

    Article  Google Scholar 

  • Rong Y, Geng Z, Lau BSH (1996) Ginko biloba attenuates oxidative stress in macrophages and endothelial cells. Free Radic Biol Med 20:121–127

    Article  CAS  PubMed  Google Scholar 

  • Sabolic I (2006) Loss of basolateral invaginations in proximal tubules of cadmium-intoxicated rats is independent of microtubules and clathrin. Toxicology 218:149–163

    Article  CAS  PubMed  Google Scholar 

  • Scibior A, Zaporowska H (2007) Effects of vanadium(V) and/or chromium(III) on l-ascorbic acid and glutathione as well as iron, zinc, and copper levels in rat liver and kidney. J Toxicol Environ Health A 70:696–704

    Article  CAS  PubMed  Google Scholar 

  • Sedlak J, Lindsay RH (1958) Estimation of total, protein-bound, and non protein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 24/25:192–205

    Google Scholar 

  • Sellins KS, Cohen JJ (1987) Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 139:3199–3206

    Article  CAS  PubMed  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  CAS  PubMed  Google Scholar 

  • Son HY, Kim H, Kwon YH (2007) Taurine prevents oxidative damage of high glucose-induced cataractogenesis in isolated rat lenses. J Nutr Sci Vitaminol 53:324–330

    Article  CAS  PubMed  Google Scholar 

  • Sorensen EMB, Smith NKR, Boecker CS, Acosta D (1984) Calcium amelioration of cadmium induced cytotoxicity in cultured rat hepatocytes. In Vitro 20:771–779

    Article  CAS  PubMed  Google Scholar 

  • Stohs SJ, Bagchi D, Hassoun E, Bagchi M (2000) Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 19:201–213

    CAS  PubMed  Google Scholar 

  • Sunitha S, Nagaraj M, Varalakshmi P (2001) Hepatoprotective effect of lupeol and lupeol linoleate on tissue antioxidant defence system in cadmium induced hepatotoxicity in rats. Fitoterapia 72:516–523

    Article  CAS  PubMed  Google Scholar 

  • Szuster-Ciesielska A, Stachura A, Slotwinska M, Kaminska T, Sneizko R, Paduch, Abramczyk D, Filar J, Kandefer-Szerszen M (2000) The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures. Toxicology 145:159–171

    Article  CAS  PubMed  Google Scholar 

  • Tabassum H, Rehman H, Banerjee BD, Raisuddin S, Parvez S (2006) Attenuation of tamoxifen-induced hepatotoxicity by taurine in mice. Clin Chim Acta 370:129–136

    Article  CAS  PubMed  Google Scholar 

  • Timbrell JA, Seabra V, Watereld CJ (1995) The in vivo and in vitro protective properties of taurine. Gen Pharmacol 26:453–462

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Stadtman ER (1993) Covalent attachment of 4-hydroxynonenal to glyceraldehydes-3-phosphate dehydrogenase. J Biol Chem 268:6388–6393

    Article  CAS  PubMed  Google Scholar 

  • US Department of Health, Human Services (1997) Toxicological profile for cadmium. Draft for Public Comment, Agency for Toxic Substances and Disease Registry, Atlanta

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117

    Article  CAS  PubMed  Google Scholar 

  • Watjen W, Beyermann D (2004) Cadmium induced apoptosis in C6 glioma cells: influence of oxidative stress. Biometals 17:65–78

    Article  PubMed  Google Scholar 

  • Wessberg P, Hedner T, Hedner J, Jonason J (1983) Effects of taurine and taurine antagonists on some respiratory and cardiovascular parameters. Life Sci 33:1649–1656

    Article  CAS  PubMed  Google Scholar 

  • WHO (1992) Environmental health criteria 134, cadmium, 1st edn. World Health Organization, Geneva

    Google Scholar 

  • Wittman R, Hu H (2002) Cadmium exposure and nephropathy in a 28-year-old female metals worker. Environ Health Perspect 110:1261–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright CE, Tallan HH, Linn YY (1986) Taurine: biological update. Annu Rev Biochem 55:427–453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Mr. Prasanta Pal for excellent technical assistance for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parames C. Sil.

Additional information

Prasenjit Manna and Mahua Sinha contributed equally in the study.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s00726-024-03390-w

About this article

Cite this article

Manna, P., Sinha, M. & Sil, P.C. RETRACTED ARTICLE: Taurine plays a beneficial role against cadmium-induced oxidative renal dysfunction. Amino Acids 36, 417–428 (2009). https://doi.org/10.1007/s00726-008-0094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0094-x

Keywords

Navigation