Skip to main content
Log in

Solution structure of NPr, a bacterial signal-transducing protein that controls the phosphorylation state of the potassium transporter-regulating protein IIANtr

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

A nitrogen-related signal transduction pathway, consisting of the three phosphotransfer proteins EINtr, NPr, and IIANtr, was discovered recently to regulate the uptake of K+ in Escherichia coli. In particular, dephosphorylated IIANtr inhibits the activity of the K+ transporter TrkA. Since the phosphorylation state of IIANtr is partially determined by its reversible phosphorylation by NPr, we have determined the three-dimensional structure of NPr by solution NMR spectroscopy. In total, we obtained 973 NOE-derived distance restraints, 112 chemical shift-derived backbone angle restraints, and 35 hydrogen-bond restraints derived from temperature coefficients (wave). We propose that temperature wave is useful for identifying exposed beta-strands and assists in establishing protein folds based on chemical shifts. The deduced structure of NPr contains three α-helices and four β-strands with the three helices all packed on the same face of the β-sheet. The active site residue His16 of NPr for phosphoryl transfer was found to be neutral and in the Nε2-H tautomeric state. There appears to be increased motion in the active site region of NPr compared to HPr, a homologous protein involved in the uptake and regulation of carbohydrate utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NPr:

Nitrogen-related HPr

HPr:

Histidine-containing protein

EINtr :

Nitrogen-related enzyme I

HSQC:

Heteronuclear single quantum coherence spectroscopy

IIANtr :

Nitrogen-related enzyme IIA

GAF:

cGMP-specific and –stimulated phosphodiesterases, Anabaena adenylate cyclases and Escherichia coli FhlA

IPTG:

Isopropyl-β-D-thiogalactopyranoside

NMR:

Nuclear magnetic resonance

NOE:

Nuclear Overhauser effect

PCR:

Polymerase chain reaction

PEP:

Phosphoenolpyruvate

PTS:

Phosphoenolpyruvate:sugar phosphotransferase system

RCK:

Regulating conductance of K+

rmsd:

Root mean square deviation

SDS-PAGE:

Sodium dodecylsulfate-polyacrylamide gel electrophoresis

References

  • Anderson JW, Bhanot P, Georges F, Klevit RE, Waygood EB (1991) Involvement of the carboxy-terminal residues in the active site of the histidine-containing protein, HPr, of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli. Biochemistry 30:9601–9607

    Article  PubMed  CAS  Google Scholar 

  • Bax A, Grzesiek S (1993) Methodological advances in protein NMR. Acc Chem Res 26:131–138

    Article  CAS  Google Scholar 

  • Baxter NJ, Williamson MP (1997) Temperature dependence of 1H chemical shifts in proteins. J Biomol NMR 9:359–369

    Article  PubMed  CAS  Google Scholar 

  • Bellamacina CR (1996) The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J 10:1257–1269

    PubMed  CAS  Google Scholar 

  • Bordo D, van Monfort RLM, Pijning T et al (1998) The three-dimensional structure of the nitrogen regulatory protein IIANtr from Escherichia coli. J Mol Biol 279:245–255

    Article  PubMed  CAS  Google Scholar 

  • Bossemeyer D, Borchard A, Dosch DC et al (1989) K+-transport protein TrkA of E. coli is a peripheral membrane protein that requires other trk gene products for attachment to the cytoplsmic membrane. J Biol Chem 264:16403–16410

    PubMed  CAS  Google Scholar 

  • Chou KC (2004a) Insights from modelling three-dimensional structures of the human potassium and sodium channels. J Proteome Res 3:856–861

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2004b) Structural bioinformatics and its impact to biomedical science. Curr Med Chem 11:2105–2134

    PubMed  CAS  Google Scholar 

  • Chou JJ, Li S, Klee CB, Bax A (2001) Solution structure of Ca2+-calmodulin reveals flexible hand-like properties of its domains. Nat Struct Biol 8:990–997

    Article  PubMed  CAS  Google Scholar 

  • Cierpicki T, Otlewski J (2001) Amide proton temperature coefficients as hydrogen bond indicators in proteins. J Biomol NMR 21:249–261

    Article  PubMed  CAS  Google Scholar 

  • Clore GM, Gronenborn AM (1998) Determining structures of larger proteins and protein complexes. Trends Biotechnol 16:22–34

    Article  PubMed  CAS  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  PubMed  CAS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  PubMed  CAS  Google Scholar 

  • Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75:293–320

    Article  PubMed  CAS  Google Scholar 

  • Garrett DS, Powers R, Gronenborn AM, Clore GM (1991) A common sense approach to peak picking in two-, three-, and four-dimensional spectra using automatic computer analysis of contour diagrams. J Magn Reson 95:214–220

    CAS  Google Scholar 

  • Gouaux E, MacKinnon R (2005) Principles of selective ion transport in channels and pumps. Science 310:1461–1465

    Article  PubMed  CAS  Google Scholar 

  • Hansen DF, Vallurupalli P, Lundstrom P et al (2008) Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: how well can we do? J Am Chem Soc 130:2734–2735

    Article  PubMed  CAS  Google Scholar 

  • Jia Z, Quail JW, Waygood EB, Delbaere LT (1993) The 2.0 Å resolution structure of the Escherichia coli histidine-containing phosphocarrier protein HPr: a redetermination. J Biol Chem 268:22940–22501

    Google Scholar 

  • Jiang Y, Pico A, Cadene M et al (2001) Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in human BK channel. Neuron 29:593–601

    Article  PubMed  CAS  Google Scholar 

  • Kay LE (1997) NMR methods for the study of protein structure and dynamics. Biochem Cell Biol 75:1–15

    Article  PubMed  CAS  Google Scholar 

  • Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28:8972–8979

    Article  PubMed  CAS  Google Scholar 

  • Klevit RE, Waygood EB (1986) Two-dimensional 1H NMR studies of histidine-containing protein from Escherichia coli. 3. Secondary and tertiary structure as determined by NMR. Biochemistry 25:7774–7781

    Article  PubMed  CAS  Google Scholar 

  • Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55

    Article  PubMed  CAS  Google Scholar 

  • Kruse R, Hengstenberg W, Beneicke W, Kalbitzer HR (1993) Involvement of various amino- and carboxyl-terminal residues in the active site of the histidine-containing protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus carnosus: site-directed mutagenesis with the ptsH gene, biochemical characterization and NMR studies of the mutant proteins. Protein Eng 6:417–423

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structure. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • LaVallie ER, DiBlasio EA, Kovacs S et al (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (NY) 11:187–193

    Article  CAS  Google Scholar 

  • Lee CR, Koo BM, Cho SH et al (2005) Requirement of the dephospho-form of enzyme IIANtr for derepression of Escherichia coli K-12 ilvBN expression. Mol Microbiol 58:334–44

    Article  PubMed  CAS  Google Scholar 

  • Lee CR, Cho S-H, Yoon MJ, Peterkofsky A, Seok YJ (2007) Escherichia coli IIANtr regulates the K+ transporter TrkA. Proc Natl Acad Sci USA 104:4124–4129

    Article  PubMed  CAS  Google Scholar 

  • Li X, Peterkofsky A, Wang G (2003) 1H, 15N, and 13C chemical shift assignments of the Escherichia coli nitrogen regulatory phosphocarrier IIANtr. J Biomol NMR 27:401–402

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon R (2003) Potassium channels. FEBS Lett 555:62–65

    Article  PubMed  CAS  Google Scholar 

  • Marintchev A, Frueh D, Wagner G (2007) NMR methods for studying protein-protein interactions involved in translation initiation. Methods Enzymol 430:283–331

    Article  PubMed  CAS  Google Scholar 

  • Markley JL, Bax A, Arata Y et al (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids. IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of Data Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy. J Biomol NMR 12:1–23

    Article  PubMed  CAS  Google Scholar 

  • Merrick MJ, Coppard JR (1989) Mutations in genes downstream of the rpoN gene (encoding σ54) of Klebsiella pneumoniae affect expression from σ54-dependent promoters. Mol Microbiol 3:1765–1775

    Article  PubMed  CAS  Google Scholar 

  • Pelton JG, Torchia DA, Meadow ND, Roseman S (1993) Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated IIIGlc, a signal-transducing protein from Escherichia coli, using two-dimensional heteronuclear NMR techniques. Protein Sci 2:543–558

    Article  PubMed  CAS  Google Scholar 

  • Peterkofsky A, Wang G, Garrett DS et al (2001) Three-dimensional structures of protein–protein complexes in the E. coli PTS. J Mol Microbiol Biotechnol 3:347–354

    PubMed  CAS  Google Scholar 

  • Peterkofsky A, Wang G, Seok Y-J (2006) Parallel PTS systems. Arch Biochem Biophys 453:99–105

    Article  CAS  Google Scholar 

  • Powell BS, Court DL, Inada T et al (1995) Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem 270:4822–4839

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Reizer J, Paulsen I, Saier MH Jr (1999) Enzyme INtr from Escherichia coli. A novel enzyme of the phosphoenolpyruvate-dependent phosphotransferase system exhibiting strict specificity for its phosphoryl acceptor, NPr. J Biol Chem 274:26185–26191

    Article  PubMed  CAS  Google Scholar 

  • Reddy P, Peterkofsky A, McKenney K (1989) Hyperexpression and purification of Escherichia coli adenylate cyclase using a vector designed for expression of lethal gene products. Nucleic Acids Res 17:10473–10488

    Article  PubMed  CAS  Google Scholar 

  • Schlosser A, Hamann A, Bossemeyer D et al (1993) NAD+ binding to the Escherichia coli K+-uptake protein TrkA and sequence similarity between TrkA and domains of a family of dehydrogenases suggest a role for NAD+ in bacterial transport. Mol Microbiol 9:533–543

    Article  PubMed  CAS  Google Scholar 

  • Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–595

    Article  PubMed  CAS  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

    Article  PubMed  CAS  Google Scholar 

  • Surks HK, Mochizuki N, Kasai Y et al (1999) Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Ialpha. Science 286:1583–1587

    Article  PubMed  CAS  Google Scholar 

  • Wang G (2008) NMR of membrane-associated peptides and proteins. Curr Protein Pept Sci 9:50–69

    Article  PubMed  Google Scholar 

  • Wang G, Wylie GP, Twigg PD et al (1999) Solution structure and peptide binding studies of the C-terminal Src homology 3-like domain of the diphtheria toxin repressor protein. Proc Natl Acad Sci USA 96:6119–6124

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Louis JM, Sondej M et al (2000) Solution structure of the phosphoryl transfer complex between the signal transducing proteins HPr and IIAglucose of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. EMBO J 19:5635–5649

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Peterkofsky A, Keifer PA, Li X (2005) NMR characterization of the Escherichia coli nitrogen regulatory protein IIANtr in solution and interaction with its partner protein, NPr. Protein Sci 14:1082–1090

    Article  PubMed  CAS  Google Scholar 

  • Wishart DS, Sykes BD (1994) The 13C chemical shift index: a simple method for the identification of protein secondary structure using 13C chemical shift data. J Biomol NMR 4:171–180

    CAS  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222:311–333

    Article  PubMed  CAS  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  • Zhou GP, Troy FA (2005) NMR studies on how the binding complex of polyisoprenol recognition sequence peptides and polyisoprenols can modulate membrane structure. Curr Protein Pept Sci 6:399–411

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the startup fund from the Eppley Institute of the University of Nebraska Medical Center (UNMC) to G.W. and, in part, by the Intramural Research Program of the NIH, NHLBI to A.P. The support of UNMC also includes the accessibility to the NMR Core Facility (supported by both a CORE grant from the National Cancer Institute-NIH and the Nebraska Research Initiative NRI). We are grateful to Frank Delaglio and Dan Garrett (NIH) for NMR software. We thank Paul Keifer for maintaining the NMR hardware during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangshun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Peterkofsky, A. & Wang, G. Solution structure of NPr, a bacterial signal-transducing protein that controls the phosphorylation state of the potassium transporter-regulating protein IIANtr . Amino Acids 35, 531–539 (2008). https://doi.org/10.1007/s00726-008-0079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0079-9

Keywords

Navigation