Amino Acids

, Volume 35, Issue 2, pp 389–396 | Cite as

Computational studies of the binding modes of A2A adenosine receptor antagonists

  • Y. Ye
  • J. Wei
  • X. Dai
  • Q. Gao


A molecular docking study was performed on several structurally diverse A2A AR antagonists, including xanthines, and non-xanthine type antagonists to investigate their binding modes with A2A adenosine receptor (AR), one of the four subtypes of AR, which is currently of great interest as a target for therapeutic intervention, in particular for Parkinson’s disease. The high-affinity binding site was found to be a hydrophobic pocket with the involvement of hydrogen bonding interactions as well as π–π stacking interactions with the ligands. The detailed binding modes for both xanthine and non-xanthine type A2A antagonists were compared and the essential features were extracted and converted to database searchable queries for virtual screening study of novel A2A AR antagonists. Findings from this study are helpful for elucidating the binding pattern of A2A AR antagonists and for the design of novel active ligands.

Keywords: Adenosine receptors – A2A AR antagonists – Binding mode – Docking – Pharmacophore – Virtual screening 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baraldi, PG, Cacciari, B, Romagnoli, R, Spalluto, G, Monopoli, A, Ongini, E, Varani, K, Borea, PA 20027-Substituted 5-amino-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as A2A adenosine receptor antagonists: a study on the importance of modifications at the side chain on the activity and solubilityJ Med Chem45115126PubMedCrossRefGoogle Scholar
  2. Barbara, C, Giorgia, P, Giampiero, S 2003Medicinal chemistry of A2A adenosine receptor antagonistsCurr Top Med Chem3403411CrossRefGoogle Scholar
  3. Bockaert, J, Pin, JP 1999Molecular tinkering of G protein-coupled receptors: an evolutionary successEMBO J1817231729PubMedCrossRefGoogle Scholar
  4. Chou, KC 2004aInsights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptorBiochem Biophys Res Commun319433438CrossRefGoogle Scholar
  5. Chou, KC 2004bInsights from modelling the tertiary structure of BACE2J Proteome Res310691072CrossRefGoogle Scholar
  6. Chou, KC 2004cModelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5Biochem Biophys Res Commun316636642CrossRefGoogle Scholar
  7. Chou, KC 2004dMolecular therapeutic target for type-2 diabetesJ Proteome Res312841288CrossRefGoogle Scholar
  8. Chou, KC 2004eReview: structural bioinformatics and its impact to biomedical scienceCurr Med Chem1121052134Google Scholar
  9. Chou, KC 2005aCoupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding proteinJ Proteome Res416811686CrossRefGoogle Scholar
  10. Chou, KC 2005bModeling the tertiary structure of human cathepsin-EBiochem Biophys Res Commun3315660CrossRefGoogle Scholar
  11. Chou, KC 2006Structural bioinformatics and its impact to biomedical science and drug discoveryAtta-ur-Rahman, Reitz, AB eds. Frontiers in medicinal chemistryBentham Science PublishersThe Netherlands455502Google Scholar
  12. Chou, KC, Tomasselli, AG, Heinrikson, RL 2000Prediction of the tertiary structure of a caspase-9/inhibitor complexFEBS Lett470249256PubMedCrossRefGoogle Scholar
  13. Chou, KC, Watenpaugh, KD, Heinrikson, RL 1999A model of the complex between cyclin-dependent kinase 5(Cdk5) and the activation domain of neuronal Cdk5 activatorBiochem Biophys Res Commun259420428PubMedCrossRefGoogle Scholar
  14. Chou, KC, Wei, DQ, Du, QS, Sirois, S, Zhong, WZ 2006Review: progress in computational approach to drug development against SARSCurr Med Chem1332633270PubMedCrossRefGoogle Scholar
  15. Chou, KC, Wei, DQ, Zhong, WZ 2003Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARSBiochem Biophys Res Commun308148151Erratum: ibid., 2003, vol. 310, 675PubMedCrossRefGoogle Scholar
  16. Du, QS, Wang, S, Wei, DQ, Sirois, S, Chou, KC 2005aMolecular modelling and chemical modification for finding peptide inhibitor against SARS CoV MproAnal Biochem337262270CrossRefGoogle Scholar
  17. Du, QS, Wang, SQ, Jiang, ZQ, Gao, WN, Li, YD, Wei, DQ, Chou, KC 2005bApplication of bioinformatics in search for cleavable peptides of SARS-CoV Mpro and chemical modification of octapeptidesMed Chem1209213CrossRefGoogle Scholar
  18. Du, QS, Wang, SQ, Wei, DQ, Zhu, Y, Guo, H, Sirois, S, Chou, KC 2004Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of octapeptidePeptides2518571864PubMedCrossRefGoogle Scholar
  19. Du, QS, Sun, H, Chou, KC 2007aInhibitor design for SARS coronavirus main protease based on “distorted key theory”Med Chem316CrossRefGoogle Scholar
  20. Du QS, Wang SQ, Chou KC (2007b) Analogue inhibitors by modifying oseltamivir based on the crystal neuraminidase structure for treating drug-resistant H5N1 virus. Biochem Biophys Res Commun; doi: 10.1016/j.bbrc.2007.08.025Google Scholar
  21. Elenkov, IJ, Chrousos, GP, Wilder, RL 2000Neuroendocrine regulation of IL-2 and TNF-alpha/IL-10 balance, clinical implicationsAnn NY Acad Sci91794105PubMedCrossRefGoogle Scholar
  22. Feokistov, I, Biaggioni, I 1998Pharmalogical characterization of adenosine A2B receptorsBiochem Pharmacol55627633CrossRefGoogle Scholar
  23. Fredholm, BB, IJzerman, AP, Jacobson, KA, Klotz, KN, Linden, J 2001International union of pharmacology, XXV. Nomenclature and classification of adenosine receptorsPharmacol Rev53527552PubMedGoogle Scholar
  24. Gao, WN, Wei, DQ, Li, Y, Gao, H, Xu, WR, Li, AX, Chou, KC 2007Agaritine and its derivatives are potential inhibitors against HIV proteasesMed Chem3221226PubMedCrossRefGoogle Scholar
  25. Gui XL, Li L, Wei DQ, Zhu YS, Chou KC (2007) Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin. Amino Acids (in press)Google Scholar
  26. Hourani, SM, Boon, K, Fooks, HM, Prentice, DJ 2001Role of cyclic nucleotides in vasodilations of the rat thoracic aorta induced by adenosine analoguesBr J Pharmacol133833840PubMedCrossRefGoogle Scholar
  27. Ivanov, AA, Baskin, II, Palyulin, VA, Piccagli, L, Baraldi, PG, Zefirov, NS 2005Molecular modeling and molecular dynamics simulation of the human A2B adenosine receptor. The study of the possible binding modes of the A2B receptor antagonistsJ Med Chem4868136820PubMedCrossRefGoogle Scholar
  28. Ivanov, AA, Baskin, II, Palyulin, VA, Zefirov, NS 2002Molecular modeling the human A1 adenosine receptor and study of the mechanisms of its selective ligand bindingDokl Biochem Biophys386271274PubMedCrossRefGoogle Scholar
  29. Ivanov, AA, Baskin, II, Palyulin, VA, Zefirov, NS 2003Molecular modeling of the human A2A adenosine receptorDokl Biochem Biophys3899497PubMedCrossRefGoogle Scholar
  30. Kim, J, Wess, J, van Rhee, AM, Schöneberg, T, Jacobson, KA 1995Site-directed mutagenesis identifies residues involved into ligand recognition in the human A2A adenosine receptorJ Biol Chem2701398713997PubMedCrossRefGoogle Scholar
  31. Knutsen, LJ, Weiss, SM 2001kw-6002 (Kyowa Hakko Kogyo)Curr Opin Invest Drugs2668673Google Scholar
  32. Li, L, Wei, DQ, Wang, JF, Chou, KC 2007Computational studies of the binding mechanism of calmodulin with chrysinBiochem Biophys Res Commun35811021107PubMedCrossRefGoogle Scholar
  33. Matasi, JJ, Caldwell, JP, Hao, J, Neustadt, B, Arik, L, Foster, CJ, Lachowicz, J, Tulshian, DB 2005The discovery and synthesis of novel adenosine receptor (A2A) antagonistsBioorg Med Chem Lett1513331336PubMedCrossRefGoogle Scholar
  34. Müller, CE, Geis, U, Hipp, J, Schobert, U, Frobenius, W, Pawlowski, M, Suzuki, F, Sandoval-Ramírez, J 1997Synthesis and structure-activity relationship of 3,7-dimethyl-1-propargylxanthine derivatives, A2A-selective adenosine receptor antagonistsJ Med Chem4043964405PubMedCrossRefGoogle Scholar
  35. Müller, CE, Sandoval-Ramírez, J, Schobert, U, Geis, U, Frobenius, W, Klotz, K 1998N,8-(Sulfostyryl)xanthines: water-soluble A2A-selective adenosine receptor antagonistsBioorg Med Chem6707719PubMedCrossRefGoogle Scholar
  36. Nonaka, Y, Shimada, J, Nonaka, H, Koike, N, Aoki, N, Kobayashi, H, Kase, H, Yamaguchi, K, Suzuki, F 1993Photoisomerization of a potent and selective adenosine A2 antagonist, (E)-1,3-dipropyl-8-(3,4-dimethoxystyryl)-7-methylxanthineJ Med Chem3637313733PubMedCrossRefGoogle Scholar
  37. Ongini, E, Adami, M, Ferri, C, Bertorelli, R 1997Adenosine A2A receptors and neuroprotectionAnn NY Acad Sci8253048PubMedCrossRefGoogle Scholar
  38. Richardson, PJ, Kase, H, Jenner, PG 1997Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson’s diseaseTrends Pharmacol Sci18338344PubMedGoogle Scholar
  39. Sauer, R, Maurinsh, J, Reith, U, Fülle, F, Klotz, KN, Müller, CE 2000Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A2A-selective adenosine receptor antagonistsJ Med Chem43440448PubMedCrossRefGoogle Scholar
  40. Sirois, S, Wei, DQ, Du, QS, Chou, KC 2004Virtual screening for SARS-CoV protease based on KZ7088 pharmacophore pointsJ Chem Inf Comput Sci4411111122PubMedCrossRefGoogle Scholar
  41. Stefano, M, Giampiero, S, Kenneth, AJ 2005Techniques: recent developments in computer-aided engineering of GPCR ligands using the human adenosine A3 receptor as an exampleTrends Pharmacol Sci254451Google Scholar
  42. Vassalo, R, Lipsky, JJ 1998Theophylline: recent advances in the understanding of its mode of action and uses in clinical practiceMayo Clin Proc73346354CrossRefGoogle Scholar
  43. Varani, K, Rigamonti, D, Sipione, S, Camurri, A, Borea, PA, Cattabeni, F, Abbracchio, MP, Cattaneo, E 2001Aberrant amplification of A2A receptor signaling in striatal cells expressing mutant huntingtinFASEB1512451247Google Scholar
  44. Vu, CB, Peng, B, Kumaravel, G, Smits, G, Jin, X, Phadke, D, Engber, T, Huang, C, Reilly, J, Tam, S, Grant, D, Hetu, G, Chen, L, Zhang, J, Petter, RC 2004aPiperazine derivatives of [1,2,4]triazolo-[1,5-a][1,3,5] triazine as potent and selective adenosine A2A receptor antagonistsJ Med Chem4742914299CrossRefGoogle Scholar
  45. Vu, CB, Shields, P, Peng, B, Kumaravel, G, Jin, X, Phadke, D, Wang, J, Engber, T, Ayyub, E, Petter, RC 2004bTriamino derivatives of triazolotriazine and triazolopyrimidine as adenosine A2a receptor antagonistsBioorg Med Chem Lett1448354838CrossRefGoogle Scholar
  46. Wang, JF, Wei, DQ, Li, L, Zheng, SY, Li, YX, Chou, KC 2007a3D Structure modeling of cytochrome P450 2C19 and its implication for personalized drug designBiochem Biophys Res Commun355513519Corrigendum: ibid, 2007, vol. 357, 330CrossRefGoogle Scholar
  47. Wang, JF, Wei, DQ, Lin, Y, Wang, YH, Du, HL, Li, YX, Chou, KC 2007bInsights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADPBiochem Biophys Res Commun359323329CrossRefGoogle Scholar
  48. Wang, SQ, Du, QS, Chou, KC 2007cStudy of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidasesBiochem Biophys Res Commun354634640CrossRefGoogle Scholar
  49. Wang, SQ, Du, QS, Zhao, K, Li, AX, Wei, DQ, Chou, KC 2007dVirtual screening for finding natural inhibitor against cathepsin-L for SARS therapyAmino Acids33129135CrossRefGoogle Scholar
  50. Wei, DQ, Sirois, S, Du, QS, Arias, HR, Chou, KC 2005Theoretical studies of Alzheimer’s disease drug candidate [(2,4-dimethoxy) benzylidene]-anabaseine dihydrochloride (GTS-21) and its derivativesBiochem Biophys Res Commun33810591064PubMedCrossRefGoogle Scholar
  51. Wei, DQ, Du, QS, Sun, H, Chou, KC 2006aInsights from modeling the 3D structure of H5N1 influenza virus neuraminidase and its binding interactions with ligandsBiochem Biophys Res Commun34410481055CrossRefGoogle Scholar
  52. Wei, DQ, Zhang, R, Du, QS, Gao, WN, Li, Y, Gao, H, Wang, SQ, Zhang, X, Li, AX, Sirois, S, Chou, KC 2006bAnti-SARS drug screening by molecular dockingAmino Acids317380CrossRefGoogle Scholar
  53. Wei, H, Zhang, R, Wang, C, Zheng, H, Chou, KC, Wei, DQ 2007Molecular insights of SAH enzyme catalysis and their implication for inhibitor designJ Theor Biol244692702PubMedCrossRefGoogle Scholar
  54. Wei, J, Wang, S, Gao, S, Dai, X, Gao, Q 20073D-Pharmacophore models for selective A2A and A2B adenosine receptor antagonistsJ Chem Inf Model47613625PubMedCrossRefGoogle Scholar
  55. Zhang, R, Wei, DQ, Du, QS, Chou, KC 2006Molecular modeling studies of peptide drug candidates against SARSMed Chem2309314PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Y. Ye
    • 1
  • J. Wei
    • 1
  • X. Dai
    • 2
  • Q. Gao
    • 2
  1. 1.School of Pharmaceutical Science and TechnologyTianjin UniversityTianjinChina
  2. 2.Chemistry DepartmentXenoPort Inc.Santa ClaraU.S.A.

Personalised recommendations