Amino Acids

, Volume 32, Issue 4, pp 489–491 | Cite as

The effect of extractants on degradation of L-glutamate and L-arginine in the course of shaking and filtration at low temperature

  • P. Formánek
  • B. Klejdus
  • V. Vranová
Short Communication


The effects of demineralized water (DEMI H2O) and 0.5 M ammonium acetate (0.5 M AAc) on losses of L-glutamic acid and L-arginine in the course of shaking and filtration at low temperature (6 °C) were tested. The concentration of L-glutamic acid decreased by 6.3% in DEMI H2O and by 4.9% in 0.5 M AAc, whereas the L-arginine concentration decreased by 6.0% (DEMI H2O) and 10.7% (0.5 M AAc). We found a significantly (P < 0.05) higher degradation of L-arginine in 0.5 M AAc compared with that of DEMI H2O.

Keywords: Demineralized water – Ammonium acetate – Amino acids – Losses – Extraction 



dermineralized water

0.5 M AAc

0.5 M ammonium acetate




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abuarghub, SM, Read, DJ 1988The biology of mycorrhiza in the Ericaceae. XI. The distribution of nitrogen in soil of a typical upland Callunetum with special reference to the “free” amino acidsNew Phytol108425431CrossRefGoogle Scholar
  2. Chapin, FS, Moilanen, L, Kielland, K 1993Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedgeNature361150152CrossRefGoogle Scholar
  3. Fisk, MC, Schmidt, SK 1995Nitrogen mineralization and microbial biomass nitrogen dynamics in three alpine tundra communitiesSoil Sci Soc Am J5910361043CrossRefGoogle Scholar
  4. Formánek, P, Klejdus, B, Vranová, V 2005Bio-available amino acids extraction from soil by demineralized water and 0.5 M ammonium acetateAmino Acids28427429PubMedCrossRefGoogle Scholar
  5. Holden, JT 1962Transport and accumulation of amino acids by microorganismsHolden, JT eds. Amino acid pools: distribution, formation and function of free amino-acidsElsevierAmsterdam566594Google Scholar
  6. Jones, DL 1999Amino acid biodegradation and its potential effects on organic nitrogen capture by plantsSoil Biol Biochem31613622CrossRefGoogle Scholar
  7. Jones, SL, Owen, AG, Farrar, JF 2002Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extractsSoil Biol Biochem3418931902CrossRefGoogle Scholar
  8. Kaye, JP, Hart, SC 1997Competition for nitrogen between plants and soil microorganismsTrends Ecol Evol12139143CrossRefGoogle Scholar
  9. Kielland, K 1995Landscape pattern of free amino acids in arctic tundra soilsBiogeochemistry318598CrossRefGoogle Scholar
  10. Lipson, DA, Monson, RK 1998Plant-microbe competition for soil amino acids in the alpine tundra: effects of freeze-thaw and dry-rewet eventsOecologia113406414CrossRefGoogle Scholar
  11. Nordin, A, Högberg, P, Näsholm, T 2001Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradientOecologia129125132CrossRefGoogle Scholar
  12. Raab, TK, Lipson, DA, Monson, RK 1996Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycleOecologia108488494CrossRefGoogle Scholar
  13. Read, DJ 1991Mycorrhizae in ecosystemsExperentia47376391CrossRefGoogle Scholar
  14. Rehder, H, Shafer, A 1978Nutrient turnover studies in alpine ecosystems. IV. Communities of the Central Alps and comparitive surveyOecologia34309327CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • P. Formánek
    • 1
  • B. Klejdus
    • 2
  • V. Vranová
    • 1
  1. 1.Department of Geology and PedologyMendel University of Agriculture and ForestryBrnoCzech Republic
  2. 2.Department of Chemistry and BiochemistryMendel University of Agriculture and ForestryBrnoCzech Republic

Personalised recommendations