Advertisement

Amino Acids

, Volume 29, Issue 3, pp 289–300 | Cite as

Alterations in neutrophil (PMN) free intracellular alpha-keto acid profiles and immune functions induced by L-alanyl-L-glutamine, arginine or taurine

  • J. Mühling
  • K. A. Nickolaus
  • M. Halabi
  • M. Fuchs
  • M. Krüll
  • J. Engel
  • M. Wolff
  • R. Matejec
  • T. W. Langefeld
  • I. D. Welters
  • T. Menges
  • M. G. Dehne
  • A. Sablotzki
  • G. Hempelmann
Article

Summary.

The objective of this study was to determine the dose as well as duration of exposure-dependent effects of L-alanyl-L-glutamine, arginine or taurine on polymorphonuclear neutrophil (PMN) free α-keto acid profiles and, in a parallel study, on PMN immune functions. Exogenous L-alanyl-L-glutamine significantly increased PMN α-ketoglutarate, pyruvate PMN superoxide anion (O2 ) generation, hydrogen peroxide (H2O2) formation and released myeloperoxidase (MPO) activity. Arginine also led to significant increases in α-ketoglutarate, pyruvate, MPO release and H2O2 generation. Formation of O2 on the other hand was decreased by arginine. Incubation with taurine resulted in lower intracellular pyruvate and α-ketobutyrate levels, decreased O2 and H2O2 formation and a concomitant significantly increased MPO activity. We therefore believe that considerable changes in PMN free-α-keto-acid profiles, induced for example by L-alanyl-L-glutamine, arginine or taurine, may be one of the determinants in cell nutrition that considerably modulates the immunological competence of PMN.

Keywords: L-Alanyl-L-glutamine – Arginine – Taurine – Neutrophil – α-Keto acids – Immune function – Superoxide anion – Hydrogen peroxide – Myeloperoxidase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agam, G, Gutman, A 1972Synthesis of glycogen in leucocytes from various precursors.Rev Eur Etud Clin Biol17650656PubMedGoogle Scholar
  2. Albers, S, Wernerman, J, Stehle, P, Vinnars, E, Fürst, P 1988Availability of amino acids supplied intravenously in healthy man as synthetic dipeptides: kinetic evaluation of L-alanyl-L-glutamine and glycyl-L-tyrosine.Clin Sci (Lond)75463468Google Scholar
  3. Alvarez, W, Mobarhan, S 2003Finding a place for immunonutrition.Nutr Rev61214218PubMedGoogle Scholar
  4. Ardawi, MS, Newsholme, EA 1982Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilization pathways in lymphocytes of the rat.Biochem J208743748PubMedGoogle Scholar
  5. Bansal, V, Ochoa, JB 2003Arginine availability, arginase, and the immune response.Curr Opin Clin Nutr Metab Care6223228PubMedCrossRefGoogle Scholar
  6. Barbul, A 1990Arginine and immune function.Nutrition65358PubMedGoogle Scholar
  7. Belfiore, F, Borzi, V, Vecchio, LL, Napoli, E, Rabuazzo, AM 1975Enzyme activities of NADPH-forming metabolic pathways in normal and leukemic leukocytes.Clin Chem21880883PubMedGoogle Scholar
  8. Bender DA (1985) Amino acid metabolism, 2nd edn., Chichester New York Brisbane Toronto SingaporeGoogle Scholar
  9. Bihari, D 2002Immunonutrition in the critically ill.JPEN J Parenter Enteral Nutr266769PubMedCrossRefGoogle Scholar
  10. Blanc, MC, Moinard, C, Beziel, A, Darquy, S, Cynober, L, De Bandt, JP 2005Arginine and glutamine availability and macrophage functions in the obese insulin-resistant Zucker rat.J Cell Physiol202153159PubMedCrossRefGoogle Scholar
  11. Blantz, RC, Munger, K 2002Role of nitric oxide in inflammatory conditions.Nephron90373378PubMedCrossRefGoogle Scholar
  12. Board, M, Humm, S, Newsholme, EA 1990Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells.Biochem J265503509PubMedGoogle Scholar
  13. Brand, K, Fekl, W, von Hintzenstern, J, Langer, K, Luppa, P, Schoerner, C 1989Metabolism of glutamine in lymphocytes.Metabolism382933PubMedCrossRefGoogle Scholar
  14. Burg, ND, Pillinger, MH 2001The neutrophil: function and regulation in innate and humoral immunity.Clin Immunol99717PubMedCrossRefGoogle Scholar
  15. Calder, PC 2003Immunonutrition.BMJ327117118PubMedGoogle Scholar
  16. Castell, L 2003Glutamine supplementation in vitro and in vivo, in exercise and in immunodepression.Sports Med33323345PubMedGoogle Scholar
  17. Cedergren, J, Follin, P, Forslund, T, Lindmark, M, Sundqvist, T, Skogh, T 2003Inducible nitric oxide synthase (NOS II) is constitutive in human neutrophils.APMIS111963968PubMedCrossRefGoogle Scholar
  18. Chen, JG, Kempson, SA 1995Osmoregulation of neutral amino acid transport.Proc Soc Exp Biol Med21016PubMedGoogle Scholar
  19. Cuisinier, C, Michotte, DW, Verbeeck, RK, Poortmans, JR, Ward, R, Sturbois, X, Francaux, M 2002Role of taurine in osmoregulation during endurance exercise.Eur J Appl Physiol87489495PubMedCrossRefGoogle Scholar
  20. Curi, R, Newsholme, P, Newsholme, EA 1986Intracellular distribution of some enzymes of the glutamine utilisation pathway in rat lymphocytes.Biochem Biophys Res Commun138318322PubMedCrossRefGoogle Scholar
  21. Curi, R, Newsholme, P, Pithon-Curi, TC, Pires-de-Melo, M, Garcia, C, Homem-de-Bittencourt Junior, PI, Guimaraes, AR 1999Metabolic fate of glutamine in lymphocytes, macrophages and neutrophils.Braz J Med Biol Res321521PubMedCrossRefGoogle Scholar
  22. Curi, TC, De Melo, MP, De Azevedo, RB, Curi, R 1997aGlutamine utilization by rat neutrophils.Biochem Soc Trans25249251Google Scholar
  23. Curi, TC, De Melo, MP, De Azevedo, RB, Zorn, TM, Curi, R 1997bGlutamine utilization by rat neutrophils: presence of phosphate-dependent glutaminase.Am J Physiol273C1124C1129Google Scholar
  24. Dahlgren, C, Karlsson, A 1999Respiratory burst in human neutrophils.J Immunol Methods232314PubMedCrossRefGoogle Scholar
  25. Davidson, A 2004The pharmacological effects of novel nutrients on the immune system.Nurs Times1006263PubMedGoogle Scholar
  26. Denno, R, Rounds, JD, Faris, R, Holejko, LB, Wilmore, DW 1996Glutamine-enriched total parenteral nutrition enhances plasma glutathione in the resting state.J Surg Res613538PubMedCrossRefGoogle Scholar
  27. Eggleton, P, Gargan, R, Fisher, D 1989Rapid method for the isolation of neutrophils in high yield without the use of dextran or density gradient polymers.J Immunol Methods121105113PubMedCrossRefGoogle Scholar
  28. Evoy, D, Lieberman, MD, Fahey TJ, TJ,III, Daly, JM 1998Immunonutrition: the role of arginine.Nutrition14611617PubMedCrossRefGoogle Scholar
  29. Farriol, M, Venereo, Y, Rossello, J, Gomez, P, Palao, R, Orta, X, Segovia-Silvestre, T 2002Effects of taurine on polymorphonuclear phagocytosis activity in burned patients.Amino Acids23441445PubMedCrossRefGoogle Scholar
  30. Fauth, U, Heinrichs, W, Puente-Gonzalez, I, Halmagyi, M 1990Maximale Umsatzraten an Enzymen der Glykolyse und des Zitratzyklus von separierten Granulozyten in der postoperativen Phase. [Maximal turnover rates of glycolysis enzymes and of the citrate cycle of separated granulocytes in the postoperative period].Infusionstherapie17178183PubMedGoogle Scholar
  31. Fauth, U, Schlechtriemen, T, Heinrichs, W, Puente-Gonzalez, I, Halmagyi, M 1993The measurement of enzyme activities in the resting human polymorphonuclear leukocyte – critical estimate of a method.Eur J Clin Chem Clin Biochem31516PubMedGoogle Scholar
  32. Frei, J, Aellig, A, Nessi, P 1975Enzyme system and coenzymes involved in the energy metabolism of leukocytes. Function and metabolism of polymorphonuclear neutrophils.Ann Biol Clin (Paris)33459464Google Scholar
  33. Fürst, P 2000Conditionally indispensable amino acids (glutamine, cyst(e)ine, tyrosine, arginine, ornithine, taurine) in enteral feeding and the dipeptide concept.Nestle Nutr Workshop Ser Clin Perform Programme3199217PubMedGoogle Scholar
  34. Fürst, P, Stehle, P 1993The potential use of parenteral dipeptides in clinical nutrition.Nutr Clin Pract8106114PubMedGoogle Scholar
  35. Fürst, P, Albers, S, Stehle, P 1990aDipeptides in clinical nutrition.Proc Nutr Soc49343359Google Scholar
  36. Fürst, P, Albers, S, Stehle, P 1990bGlutamine-containing dipeptides in parenteral nutrition.JPEN J Parenter Enteral Nutr14118124Google Scholar
  37. Fürst, P, Pogan, K, Hummel, M, Herzog, B, Stehle, P 1997aDesign of parenteral synthetic dipeptides for clinical nutrition: in vitro and in vivo utilization.Ann Nutr Metab411021Google Scholar
  38. Fürst, P, Pogan, K, Stehle, P 1997bGlutamine dipeptides in clinical nutrition.Nutrition13731737Google Scholar
  39. Gabrilovich D (1999) The neutrophils: new outlook for old cells. Imperial college press, LondonGoogle Scholar
  40. Garcia, C, Pithon-Curi, TC, de Lourdes Firm, , Pires, dM, Newsholme, P, Curi, R 1999Effects of adrenaline on glucose and glutamine metabolism and superoxide production by rat neutrophils.Clin Sci (Lond)96549555Google Scholar
  41. Grimble, RF 2001Nutritional modulation of immune function.Proc Nutr Soc60389397PubMedCrossRefGoogle Scholar
  42. Grimble, RF, Grimble, GK 1998Immunonutrition: role of sulfur amino acids, related amino acids, and polyamines.Nutrition14605610PubMedGoogle Scholar
  43. Grimm, H, Kraus, A 2001Immunonutrition.Langenbecks Arch Surg386369376PubMedGoogle Scholar
  44. Hubl, W, Druml, W, Langer, K, Lochs, H 1989Influence of molecular structure and plasma hydrolysis on the metabolism of glutamine-containing dipeptides in humans.Metabolism385962PubMedCrossRefGoogle Scholar
  45. Jacobson, E, Kurzawaski, G, Tustanowski, S 1986Synthesis and uptake of taurine by isolated human granulocytes.Folia Histochem Cytobiol24179185PubMedGoogle Scholar
  46. Kausalya, S, Nath, J 1998Interactive role of nitric oxide and superoxide anion in neutrophil-mediated endothelial cell injury.J Leukoc Biol64185191PubMedGoogle Scholar
  47. Kobayashi, T, Tsunawaki, S, Seguchi, H 2001Evaluation of the process for superoxide production by NADPH oxidase in human neutrophils: evidence for cytoplasmic origin of superoxide.Redox Rep62736PubMedCrossRefGoogle Scholar
  48. Krumholz, W, Demel, C, Jung, S, Meuthen, G, Hempelmann, G 1993The influence of intravenous anaesthetics on polymorphonuclear leukocyte function.Can J Anaesth40770774PubMedCrossRefGoogle Scholar
  49. Krumholz, W, Demel, C, Jung, S, Meuthen, G, Knecht, J, Hempelmann, G 1995The effects of thiopentone, etomidate, ketamine and midazolam on several bactericidal functions of polymorphonuclear leucocytes in vitro.Eur J Anaesthesiol12141146PubMedGoogle Scholar
  50. Liu, H, Pope, RM 2004Phagocytes: mechanisms of inflammation and tissue destruction.Rheum Dis Clin North Am301939PubMedGoogle Scholar
  51. Luciak, M, Trznadel, K 1983Activity of various lysosomal enzymes of neutrophils in the initial period of hemodialysis in patients with chronic uremia.Pol Tyg Lek38877880PubMedGoogle Scholar
  52. Marquez, LA, Dunford, HB 1994Chlorination of taurine by myeloperoxidase. Kinetic evidence for an enzyme-bound intermediate.J Biol Chem26979507956PubMedGoogle Scholar
  53. Masuda, M, Horisaka, K, Koeda, T 1984aRole of taurine in neutrophil function.Nippon Yakurigaku Zasshi84283292Google Scholar
  54. Masuda, M, Horisaka, K, Koeda, T 1984bInfluences of taurine on functions of rat neutrophils.Jpn J Pharmacol34116118Google Scholar
  55. McLoughlin, DM, Stapleton, PP, Bloomfield, FJ 1991Influence of taurine and a substituted taurine on the respiratory burst pathway in the inflammatory response.Biochem Soc Trans197378PubMedGoogle Scholar
  56. Metcoff, J 1986Intracellular amino acid levels as predictors of protein synthesis.J Am Coll Nutr5107120PubMedGoogle Scholar
  57. Metcoff J, Pederson J, Gable J, Llach F (1987) Protein synthesis, cellular amino acids, and energy levels in CAPD patients. Kidney Int [Suppl 22]: 136–144Google Scholar
  58. Metcoff, J, Distler, G, Weber, R, Graser, T, Scharer, K, Fürst, P, Schönberg, D 1988Relation of amino acids, energy levels and protein synthesis in chronic renal disease.Child Nephrol Urol9153159PubMedGoogle Scholar
  59. Metcoff, J, Fürst, P, Scharer, K, Distler, G, Weber, R, Mangold, J, Graser, TA, Pfaff, G, Schonberg, D 1989Energy production, intracellular amino acid pools, and protein synthesis in chronic renal disease.J Am Coll Nutr8271284PubMedGoogle Scholar
  60. Mitzkat, HJ, Wiegrefe, K, Meyer, U 1972Enzyme patterns of the energy-linked metabolism in blood cells of human diabetics.Horm Metab Res4107110PubMedGoogle Scholar
  61. Mizuho, F, Mori, H, Deguchi, S, Ogawa, Y, Hori, T 1996Aspartate aminotransferase (AST) levels in human periodontium-derived cells.J Periodontol67733736PubMedGoogle Scholar
  62. Moffat-FLJ, , Han, T, Li, ZM, Peck, MD, Jy, W, Ahn, YS, Chu, AJ, Bourguignon, LY 1996Supplemental L-arginine HCl augments bacterial phagocytosis in human polymorphonuclear leukocytes.J Cell Physiol1682633Google Scholar
  63. Moinard, C, Chauveau, B, Walrand, S, Felgines, C, Chassagne, J, Caldefie, F, Cynober, LA, Vasson, MP 1999Phagocyte functions in stressed rats: comparison of modulation by glutamine, arginine and ornithine 2-oxoglutarate.Clin Sci (Colch)975965CrossRefGoogle Scholar
  64. Moinard, C, Caldefie, F, Walrand, S, Felgines, C, Vasson, MP, Cynober, L 2000Involvement of glutamine, arginine, and polyamines in the action of ornithine alpha-ketoglutarate on macrophage functions in stressed rats.J Leukoc Biol67834840PubMedGoogle Scholar
  65. Moinard, C, Caldefie-Chezet, F, Walrand, S, Vasson, MP, Cynober, L 2002aEvidence that glutamine modulates respiratory burst in stressed rat polymorphonuclear cells through its metabolism into arginine.Br J Nutr88689695Google Scholar
  66. Moinard, C, Caldefie, F, Walrand, S, Tridon, A, Chassagne, J, Vasson, MP, Cynober, L 2002bEffects of ornithine 2-oxoglutarate on neutrophils in stressed rats: evidence for the involvement of nitric oxide and polyamines.Clin Sci (Lond)102287295Google Scholar
  67. Montejo, JC, Zarazaga, A, Lopez-Martinez, J, Urrutia, G, Roque, M, Blesa, AL, Celaya, S, Conejero, R, Galban, C, Garcia, dL, Grau, T, Mesejo, A, Ortiz-Leyba, C, Planas, M, Ordonez, J, Jimenez, FJ 2003Immunonutrition in the intensive care unit. A systematic review and consensus statement.Clin Nutr22221233PubMedGoogle Scholar
  68. Mulligan, MS, Lentsch, AB, Ward, PA 1998 In vivo recruitment of neutrophils: consistent requirements for L-arginine and variable requirements for complement and adhesion molecules.Inflammation22327339PubMedGoogle Scholar
  69. Munder, M, Mollinedo, F, Calafat, J, Canchado, J, Gil-Lamaignere, C, Fuentes, JM, Luckner, C, Doschko, G, Soler, G, Eichmann, K, Muller, FM, Ho, AD, Goerner, M, Modolell, M 2005Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity.Blood10525492556PubMedCrossRefGoogle Scholar
  70. Mühling, J, Campos, ME, Sablotzki, A, Krüll, M, Dehne, MG, Gonter, J, Weiss, S, Fuchs, M, Hempelman, G 2002aEffects of propofol and taurine on intracellular free amino acid profiles and immune function markers in neutrophils in vitro.Clin Chem Lab Med40111121Google Scholar
  71. Mühling, J, Fuchs, M, Sablotzki, A, Fleck, C, Krüll, M, Dehne, MG, Gonter, J, Weiss, S, Engel, J, Hempelman, G 2002bEffects of arginine, L-alanyl-L-glutamine or taurine on neutrophil (PMN) free amino acid profiles and immune functions in vitro.Amino Acids223953Google Scholar
  72. Mühling, J, Fuchs, M, Campos, ME, Gonter, J, Engel, JM, Sablotzki, A, Menges, T, Weiss, S, Dehne, MG, Krüll, M, Hempelmann, G 2003Quantitative determination of free intracellular alpha-keto acids in neutrophils.J Chromatogr B Analyt Technol Biomed Life Sci789383392PubMedGoogle Scholar
  73. Mühling, J, Fuchs, M, Campos, M, Gonter, J, Sablotzki, A, Engel, J, Welters, ID, Wolff, M, Matejec, R, Dehne, MG, Menges, T, Krüll, M, Hempelmann, G 2004Effects of ornithine on neutrophil (PMN) free amino acid and alpha-keto acid profiles and immune functions in vitro.Amino Acids27313319PubMedGoogle Scholar
  74. Newsholme, P 2001Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection?J Nutr13125152522Google Scholar
  75. Newsholme, EA, Crabtree, B, Ardawi, MS 1985The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells.Biosci Rep5393400PubMedCrossRefGoogle Scholar
  76. Newsholme, EA, Newsholme, P, Curi, R 1987The role of the citric acid cycle in cells of the immune system and its importance in sepsis, trauma and burns.Biochem Soc Symp54145162PubMedGoogle Scholar
  77. Newsholme, P, Lima, MM, Procopio, J, Pithon-Curi, TC, Doi, SQ, Bazotte, RB, Curi, R 2003aGlutamine and glutamate as vital metabolites.Braz J Med Biol Res36153163CrossRefGoogle Scholar
  78. Newsholme, P, Procopio, J, Lima, MM, Pithon-Curi, TC, Curi, R 2003bGlutamine and glutamate-their central role in cell metabolism and function.Cell Biochem Funct2119CrossRefGoogle Scholar
  79. O’Dowd, Y, Newsholme, P 1997Evidence for the involvement of glutamine in nitric oxide (NO) production by immunostimulated neutrophils.Biochem Soc Trans25403405Google Scholar
  80. Pithon-Curi, TC, Levada, AC, Lopes, LR, Doi, SQ, Curi, R 2002aGlutamine plays a role in superoxide production and the expression of p47phox, p22phox and gp91phox in rat neutrophils.Clin Sci (Lond)103403408Google Scholar
  81. Pithon-Curi, TC, Trezena, AG, Tavares-Lima, W, Curi, R 2002bEvidence that glutamine is involved in neutrophil function.Cell Biochem Funct208186CrossRefGoogle Scholar
  82. Pithon-Curi, TC, De Melo, MP, Curi, R 2004Glucose and glutamine utilization by rat lymphocytes, monocytes and neutrophils in culture: a comparative study.Cell Biochem Funct22321326PubMedCrossRefGoogle Scholar
  83. Porter, DW, Walker, SA, Martin, WG, Lee, P, Kaczmarczyk, W 1991Taurine uptake in chicken leukocytes and erythrocytes.Comp Biochem Physiol A98305309PubMedCrossRefGoogle Scholar
  84. Raschke, P, Massoudy, P, Becker, BF 1995Taurine protects the heart from neutrophil-induced reperfusion injury.Free Radic Biol Med19461471PubMedCrossRefGoogle Scholar
  85. Redmond, HP, Stapleton, PP, Neary, P, Bouchier, HD 1998Immunonutrition: the role of taurine.Nutrition14599604PubMedCrossRefGoogle Scholar
  86. Rick W (1977) Klinische Chemie und Mikroskopie. Springer Berlin Heidelberg New YorkGoogle Scholar
  87. Rodenas, J, Carbonell, T, Mitjavila, MT 1996Conditions to study nitric oxide generation by polymorphonuclear cells from an inflammatory exudate in rats.Arch Biochem Biophys327292294PubMedGoogle Scholar
  88. Rodenas, J, Mitjavila, MT, Carbonell, T 1998Nitric oxide inhibits superoxide production by inflammatory polymorphonuclear leukocytes.Am J Physiol274C827C830PubMedGoogle Scholar
  89. Roth, E, Oehler, R, Manhart, N, Exner, R, Wessner, B, Strasser, E, Spittler, A 2002Regulative potential of glutamine – relation to glutathione metabolism.Nutrition18217221PubMedCrossRefGoogle Scholar
  90. Salvemini, D, Ischiropoulos, H, Cuzzocrea, S 2003Roles of nitric oxide and superoxide in inflammation.Methods Mol Biol225291303PubMedGoogle Scholar
  91. Satriano, J 2004Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines: review article.Amino Acids26321329PubMedCrossRefGoogle Scholar
  92. Schaffer, S, Takahashi, K, Azuma, J 2000Role of osmoregulation in the actions of taurine.Amino Acids19527546PubMedCrossRefGoogle Scholar
  93. Schaffer, S, Azuma, J, Takahashi, K, Mozaffari, M 2003Why is taurine cytoprotective?Adv Exp Med Biol526307321PubMedGoogle Scholar
  94. Schapira, RM, Wiessner, JH, Morrisey, JF, Almagro, UA, Nelin, LD 1998L-arginine uptake and metabolism by lung macrophages and neutrophils following intratracheal instillation of silica in vivo.Am J Respir Cell Mol Biol19308315PubMedGoogle Scholar
  95. Schuller-Levis, GB, Park, E 2003Taurine: new implications for an old amino acid.FEMS Microbiol Lett226195202PubMedCrossRefGoogle Scholar
  96. Schuller-Levis, GB, Park, E 2004Taurine and its chloramine: modulators of immunity.Neurochem Res29117126PubMedCrossRefGoogle Scholar
  97. Schuller-Levis, GB, Sturman, JA 1992“Activation” of alveolar leukocytes isolated from cats fed taurine-free diets.Adv Exp Med Biol3158390PubMedGoogle Scholar
  98. Schuller-Levis, G, Mehta, PD, Rudelli, R, Sturman, J 1990Immunologic consequences of taurine deficiency in cats.J Leukoc Biol47321331PubMedGoogle Scholar
  99. Seth, P, Kumari, R, Dikshit, M, Srimal, RC 1994Modulation of rat peripheral polymorphonuclear leukocyte response by nitric oxide and arginine.Blood8427412748PubMedGoogle Scholar
  100. Singh, R, Gopalan, S, Sibal, A 2002Immunonutrition.Indian J Pediatr69417419PubMedGoogle Scholar
  101. Son, M, Ko, JI, Kim, WB, Kang, HK, Kim, BK 1998Taurine can ameliorate inflammatory bowel disease in rats.Adv Exp Med Biol442291298PubMedGoogle Scholar
  102. Stapleton, P, Charles, RP, Redmond, HP, Bouchier-Hayes, DJ 1997Taurine and human nutrition.Clin Nutr16103108PubMedGoogle Scholar
  103. Stapleton, PP, O’Flaherty, L, Redmond, HP, Bouchier-Hayes, DJ 1998aHost defense – a role for the amino acid taurine?JPEN J Parenter Enteral Nutr224248CrossRefGoogle Scholar
  104. Stapleton, PP, Redmond, HP, Bouchier-Hayes, DJ 1998bMyeloperoxidase (MPO) may mediate neutrophil adherence to the endothelium through upregulation of CD11B expression – an effect downregulated by taurine.Adv Exp Med Biol442183192Google Scholar
  105. Stechmiller, JK, Childress, B, Porter, T 2004Arginine immunonutrition in critically ill patients: a clinical dilemma.Am J Crit Care131723PubMedGoogle Scholar
  106. Stehle, P, Ratz, I, Fürst, P 1989 In vivo utilization of intravenously supplied L-alanyl-L-glutamine in various tissues of the rat.Nutrition5411415PubMedGoogle Scholar
  107. Stehle, P, Ratz, I, Fürst, P 1991Whole-body autoradiography in rats after intravenous administration of L-alanyl-L-[U-14C]glutamine.Ann Nutr Metab35213220PubMedCrossRefGoogle Scholar
  108. Stjernholm, RL, Dimitrov, NV, Pijanowski, LJ 1969Carbohydrate metabolism in leukocytes. IX. Citric acid cycle activity in human neutrophils.J Reticuloendothel Soc6194201PubMedGoogle Scholar
  109. Suchner, U, Kuhn, KS, Fürst, P 2000The scientific basis of immunonutrition.Proc Nutr Soc59553563PubMedGoogle Scholar
  110. Walters, JD, Sorboro, DM, Chapman, KJ 1992Polyamines enhance calcium mobilization in fMet-Leu-Phe-stimulated phagocytes.FEBS Lett3043740PubMedCrossRefGoogle Scholar
  111. Washizu, T, Kuramoto, E, Abe, M, Sako, T, Arai, T 1998A comparison of the activities of certain enzymes related to energy metabolism in leukocytes in dogs and cats.Vet Res Commun22187192PubMedCrossRefGoogle Scholar
  112. Wiedermann, CJ, Sitte, B, Zilian, U, Reinisch, N, Beimpold, H, Finkenstedt, G, Braunsteiner, H 1993Inhibition of superoxide anion release from circulating neutrophils by L-arginine in man.Clin Investig71985989PubMedCrossRefGoogle Scholar
  113. Willems, HL, de Kort, TF, Trijbels, FJ, Monnens, LA, Veerkamp, JH 1978Determination of pyruvate oxidation rate and citric acid cycle activity in intact human leukocytes and fibroblasts.Clin Chem24200203PubMedGoogle Scholar
  114. Witko-Sarsat, V, Rieu, P, Descamps-Latscha, B, Lesavre, P, Halbwachs-Mecarelli, L 2000Neutrophils: molecules, functions and pathophysiological aspects.Lab Invest80617653PubMedGoogle Scholar
  115. Wolfe, DM, Gatfield, PD 1975Leukocyte urea cycle enzymes in hyperammonemia.Pediatr Res9531535PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • J. Mühling
    • 1
  • K. A. Nickolaus
    • 1
  • M. Halabi
    • 1
  • M. Fuchs
    • 2
  • M. Krüll
    • 3
  • J. Engel
    • 1
  • M. Wolff
    • 1
  • R. Matejec
    • 1
  • T. W. Langefeld
    • 1
  • I. D. Welters
    • 1
  • T. Menges
    • 1
  • M. G. Dehne
    • 1
  • A. Sablotzki
    • 4
  • G. Hempelmann
    • 1
  1. 1.Department of AnaesthesiologyIntensive Care Medicine, Pain Therapy, University Hospital, Justus Liebig UniversityGiessenGermany
  2. 2.Dr. Ing. Herbert Knauer GmbHBerlinGermany
  3. 3.Department of Internal Medicine/Infectious DiseasesCharité, Medical School of Humboldt UniversityBerlinGermany
  4. 4.Clinics of Anaesthesiology and Intensive Care Medicine, Martin Luther UniversityHalle-WittenbergGermany

Personalised recommendations