Skip to main content
Log in

Scavenger-Based Immobilized Rh and Ir Complexes in Hydrogenation of Propyne and Propene with Parahydrogen

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The immobilization of dimeric [M2(COD)2(μ–Cl)2] complexes (M – Rh or Ir) by the interaction with -SH groups of 3-mercaptopropyl-functionalized silica gel leads to RhCl–S–SiO2 and IrCl–S–SiO2 catalysts active in hydrogenations of propene and propyne. Nuclear magnetic resonance enhancement in parahydrogen-induced polarization experiments was studied in a wide range of hydrogenations conditions (25–120 °C, 1.0–3.9 bar). The structural transformations were studied using ex situ X-ray photoelectron spectroscopy (XPS). It was established that IrCl–S–SiO2 demonstrated greater thermal stability in the hydrogenation of both propene and propyne in comparison with RhCl–S–SiO2. The beneficial effect of propyne was elucidated for thermal stability of studied catalysts and for the efficiency of the pairwise hydrogen addition. This can be explained by more efficient binding of the C≡C triple bond to an active center. The increase in reaction pressure typically leads to higher conversion in hydrogenations for both catalysts, but also decreases the temperatures sufficient for the reduction of anchored complexes with the formation of metal nanoparticles, which was confirmed by XPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

All data necessary to support the findings of this study are included in this article.

References

  1. J. Eills, D. Budker, S. Cavagnero, E.Y. Chekmenev, S.J. Elliott, S. Jannin, A. Lesage, J. Matysik, T. Meersmann, T. Prisner, J.A. Reimer, H. Yang, I.V. Koptyug, Spin hyperpolarization in modern magnetic resonance. Chem. Rev. 123(4), 1417–1551 (2023)

    Article  Google Scholar 

  2. S.J. Nelson, J. Kurhanewicz, D.B. Vigneron, P.E.Z. Larson, A.L. Harzstark, M. Ferrone, M. Van Criekinge, J.W. Chang, R. Bok, I. Park, G. Reed, L. Carvajal, E.J. Small, P. Munster, V.K. Weinberg, J.H. Ardenkjær-Larsen, A.P. Chen, R.E. Hurd, L.I. Odegardstuen, F.J. Robb, J. Tropp, J.A. Murray, Metabolic imaging of patients with prostate cancer using hyperpolarized [1–13C]pyruvate. Sci. Transl. Med. 5(198), 198ra108 (2013)

    Article  Google Scholar 

  3. C.R. Bowers, D.P. Weitekamp, Parahydrogen and synthesis allow dramatically enhanced nuclear alignment. J. Am. Chem. Soc. 109(18), 5541–5542 (1987)

    Article  Google Scholar 

  4. C.R. Bowers, Sensitivity enhancement utilizing parahydrogen, in Encyclopedia of magnetic resonance, vol. 9, ed. by R.K. Harris, R. Wasylishen (John Wiley, Chichesterm, UK, 2007), pp.750–770

    Google Scholar 

  5. S. Korchak, S. Mamone, S. Glöggler, Over 50 % 1H and 13C polarization for generating hyperpolarized metabolites—a para-hydrogen approach. ChemistryOpen 7(9), 672–676 (2018)

    Article  Google Scholar 

  6. K.V. Kovtunov, I.E. Beck, V.I. Bukhtiyarov, I.V. Koptyug, Observation of parahydrogen-induced polarization in heterogeneous hydrogenation on supported metal catalysts. Angew. Chem. Int. Ed. 47(8), 1492–1495 (2008)

    Article  Google Scholar 

  7. E.V. Pokochueva, D.B. Burueva, O.G. Salnikov, I.V. Koptyug, Heterogeneous catalysis and parahydrogen-induced polarization. ChemPhysChem 22(14), 1421–1440 (2021)

    Article  Google Scholar 

  8. K.V. Kovtunov, O.G. Salnikov, I.V. Skovpin, N.V. Chukanov, D.B. Burueva, I.V. Koptyug, Catalytic hydrogenation with parahydrogen: a bridge from homogeneous to heterogeneous catalysis. Pure Appl. Chem. 92, 1029–1046 (2020)

    Article  Google Scholar 

  9. S. Glöggler, A.M. Grunfeld, Y.N. Ertas, J. McCormick, S. Wagner, P.P.M. Schleker, L.-S. Bouchard, A nanoparticle catalyst for heterogeneous phase para-hydrogen-induced polarization in water. Angew. Chem. Int. Ed. 54(8), 2452–2456 (2015)

    Article  Google Scholar 

  10. L. Kaltschnee, A.P. Jagtap, J. McCormick, S. Wagner, L.-S. Bouchard, M. Utz, C. Griesinger, S. Glöggler, Hyperpolarization of amino acids in water utilizing parahydrogen on a rhodium nanocatalyst. Chem. A Eur. J. 25, 11031–11035 (2019)

    Article  Google Scholar 

  11. O.G. Salnikov, N.V. Chukanov, L.M. Kovtunova, V.I. Bukhtiyarov, K.V. Kovtunov, R.V. Shchepin, I.V. Koptyug, E.Y. Chekmenev, Heterogeneous 1H and 13C parahydrogen-induced polarization of acetate and pyruvate esters. ChemPhysChem 22(13), 1389–1396 (2021)

    Article  Google Scholar 

  12. K.V. Kovtunov, D.A. Barskiy, R.V. Shchepin, O.G. Salnikov, I.P. Prosvirin, A.V. Bukhtiyarov, L.M. Kovtunova, V.I. Bukhtiyarov, I.V. Koptyug, E.Y. Chekmenev, Production of pure aqueous 13C-hyperpolarized acetate by heterogeneous parahydrogen-induced polarization. Chem. Eur. J. 22(46), 16446–16449 (2016)

    Article  Google Scholar 

  13. J. McCormick, A.M. Grunfeld, Y.N. Ertas, A.N. Biswas, K.L. Marsh, S. Wagner, S. Glöggler, L.-S. Bouchard, Aqueous ligand-stabilized palladium nanoparticle catalysts for parahydrogen-induced 13C hyperpolarization. Anal. Chem. 89(13), 7190–7194 (2017)

    Article  Google Scholar 

  14. J. McCormick, S. Korchak, S. Mamone, Y.N.N. Ertas, Z. Liu, L. Verlinsky, S. Wagner, S. Glöggler, L.-S. Bouchard, More than 12% polarization and 20 minute lifetime of 15N in a choline derivative utilizing parahydrogen and a rhodium nanocatalyst in water. Angew. Chem. Int. Ed. 57(33), 10692–10696 (2018)

    Article  Google Scholar 

  15. K.V. Kovtunov, I.V. Koptyug, M. Fekete, S.B. Duckett, T. Theis, B. Joalland, E.Y. Chekmenev, Parahydrogen-induced hyperpolarization of gases. Angew. Chem. Int. Ed. 59, 17788–17797 (2020)

    Article  Google Scholar 

  16. K.V. Kovtunov, D.A. Barskiy, A.M. Coffey, M.L. Truong, O.G. Salnikov, A.K. Khudorozhkov, E.A. Inozemtseva, I.P. Prosvirin, V.I. Bukhtiyarov, K.W. Waddell, E.Y. Chekmenev, I.V. Koptyug, High-resolution 3D proton MRI of hyperpolarized gas enabled by parahydrogen and Rh/TiO2 heterogeneous catalyst. Chem. Eur. J. 20(37), 11636–11639 (2014)

    Article  Google Scholar 

  17. V.V. Zhivonitko, V.-V. Telkki, I.V. Koptyug, Characterization of microfluidic gas reactors using remote-detection MRI and parahydrogen-induced polarization. Angew. Chem. Int. Ed. 51(32), 8054–8058 (2012)

    Article  Google Scholar 

  18. E.S. Kononenko, A.I. Svyatova, I.V. Skovpin, L.M. Kovtunova, E.Y. Gerasimov, I.V. Koptyug, Getting the most out of parahydrogen-induced signal enhancement for MRI of reacting heterogeneous systems. J. Phys. Chem. C 126(35), 14914–14921 (2022)

    Article  Google Scholar 

  19. N.M. Ariyasingha, A. Samoilenko, J.R. Birchall, M.R.H. Chowdhury, O.G. Salnikov, L.M. Kovtunova, V.I. Bukhtiyarov, D.C. Zhu, C. Qian, M. Bradley, J.G. Gelovani, I.V. Koptyug, B.M. Goodson, E.Y. Chekmenev, Ultra-low-cost disposable hand-held clinical-scale propane gas hyperpolarizer for pulmonary magnetic resonance imaging sensing. ACS Sens. 8(10), 3845–3854 (2023)

    Article  Google Scholar 

  20. N.M. Ariyasingha, M.R.H. Chowdhury, A. Samoilenko, O.G. Salnikov, N.V. Chukanov, L.M. Kovtunova, V.I. Bukhtiyarov, Z. Shi, K. Luo, S. Tan, I.V. Koptyug, B.M. Goodson, E.Y. Chekmenev, Toward lung ventilation imaging using hyperpolarized diethyl ether gas contrast agent. Chem. A Eur. J. 30, e202304071 (2024)

    Article  Google Scholar 

  21. O.G. Salnikov, D.B. Burueva, L.M. Kovtunova, V.I. Bukhtiyarov, K.V. Kovtunov, I.V. Koptyug, Mechanisms of methylenecyclobutane hydrogenation over supported metal catalysts studied by parahydrogen-induced polarization technique. ChemPhysChem 23(7), e202200072 (2022)

    Article  Google Scholar 

  22. O.G. Salnikov, E.V. Pokochueva, D.B. Burueva, L.M. Kovtunova, K.V. Kovtunov, I.V. Koptyug, Parahydrogen-induced polarization in gas-phase heterogeneous hydrogenation of epoxides. J. Phys. Chem. C 127, 23634–23644 (2023)

    Article  Google Scholar 

  23. A.V. Bukhtiyarov, D.B. Burueva, I.P. Prosvirin, A.Y. Klyushin, M.A. Panafidin, K.V. Kovtunov, V.I. Bukhtiyarov, I.V. Koptyug, Bimetallic Pd-Au/highly oriented pyrolytic graphite catalysts: from composition to pairwise parahydrogen addition selectivity. J. Phys. Chem. C 122(32), 18588–18595 (2018)

    Article  Google Scholar 

  24. D.B. Burueva, A.Y. Stakheev, I.V. Koptyug, Pd-based bimetallic catalysts for parahydrogen-induced polarization in heterogeneous hydrogenations. Magn. Reson. 2(1), 93–103 (2021)

    Article  Google Scholar 

  25. E.W. Zhao, R. Maligal-Ganesh, C. Xiao, T.-W. Goh, Z. Qi, Y. Pei, H.E. Hagelin-Weaver, W. Huang, C.R. Bowers, Silica-encapsulated Pt-Sn intermetallic nanoparticles: a robust catalytic platform for parahydrogen-induced polarization of gases and liquids. Angew. Chem. Int. Ed. 56(14), 3925–3929 (2017)

    Article  Google Scholar 

  26. C. Copéret, M. Chabanas, R.P. Saint-Arroman, J.-M. Basset, Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew. Chem. Int. Ed. 42(2), 156–181 (2003)

    Article  Google Scholar 

  27. D.B. Burueva, L.M. Kovtunova, V.I. Bukhtiyarov, K.V. Kovtunov, I.V. Koptyug, Single-site heterogeneous catalysts: from synthesis to NMR signal enhancement. Chem. Eur. J. 25(6), 1420–1431 (2019)

    Article  Google Scholar 

  28. I.V. Skovpin, V.V. Zhivonitko, I.V. Koptyug, Parahydrogen-induced polarization in heterogeneous hydrogenations over silica-immobilized Rh complexes. Appl. Magn. Reson. 41(2–4), 393–410 (2011)

    Article  Google Scholar 

  29. M. Srour, S. Hadjiali, K. Brunnengräber, H. Weidler, Y. Xu, H. Breitzke, T. Gutmann, G. Buntkowsky, A novel Wilkinson’s type silica supported polymer catalyst: insights from solid-state NMR and hyperpolarization techniques. J. Phys. Chem. C 125(13), 7178–7187 (2021)

    Article  Google Scholar 

  30. I.V. Skovpin, V.V. Zhivonitko, R. Kaptein, I.V. Koptyug, Generating parahydrogen-induced polarization using immobilized iridium complexes in the gas-phase hydrogenation of carbon-carbon double and triple bonds. Appl. Magn. Reson. 44(1–2), 289–300 (2013)

    Article  Google Scholar 

  31. I.V. Skovpin, L.M. Kovtunova, A.V. Nartova, R.I. Kvon, V.I. Bukhtiyarov, I.V. Koptyug, Anchored complexes of rhodium and iridium for the hydrogenation of alkynes and olefins with parahydrogen. Catal. Sci. Technol. 12, 3247–3253 (2022)

    Article  Google Scholar 

  32. I.V. Skovpin, S.V. Sviyazov, D.B. Burueva, L.M. Kovtunova, A.V. Nartova, R.I. Kvon, V.I. Bukhtiyarov, I.V. Koptyug, Nonequilibrium nuclear spin states of ethylene during acetylene hydrogenation with parahydrogen over immobilized iridium complexes. Dokl. Phys. Chem. 512, 149–157 (2023)

    Article  Google Scholar 

  33. V.V. Zhivonitko, I.V. Skovpin, K.C. Szeto, M. Taoufik, I.V. Koptyug, Parahydrogen-induced polarization study of the silica-supported vanadium oxo organometallic catalyst. J. Phys. Chem. C 122(9), 4891–4900 (2018)

    Article  Google Scholar 

  34. D.P. Estes, G. Siddiqi, F. Allouche, K.V. Kovtunov, O.V. Safonova, A.L. Trigub, I.V. Koptyug, C. Copéret, C-H activation on Co, O sites: isolated surface sites versus molecular analogs. J. Am. Chem. Soc. 138(45), 14987–14997 (2016)

    Article  Google Scholar 

  35. M.F. Delley, M.C. Silaghi, F. Nuñez-Zarur, K.V. Kovtunov, O.G. Salnikov, D.P. Estes, I.V. Koptyug, A. Comas-Vives, C. Coperet, X-H bond activation on Cr(III), O Sites (X = R, H): key steps in dehydrogenation and hydrogenation processes. Organometallics 36(1), 234–244 (2017)

    Article  Google Scholar 

  36. M. Cai, Q. Xu, J. Jiang, The first MCM-41-supported thioether palladium(0) complex: a highly active and stereoselective catalyst for heck arylation of olefins with aryl halides. J. Mol. Catal. A Chem. 260(1), 190–196 (2006)

    Article  Google Scholar 

  37. G. Giordano, R.H. Crabtree, R.M. Heintz, D. Forster, D.E. Morris, Di-μ-Chloro-Bis(η4–1,5-Cyclooctadlene) Dirhodium(I), in Inorganic syntheses; inorganic syntheses. ed. by D.F. Shriver (John Wiley & Sons, 1979), pp.218–220

    Chapter  Google Scholar 

  38. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, in Handbook of X-ray photoelectron spectroscopy, 2nd edn., ed. by J. Chastain (Perkin-Elmer Corp, Eden Priarie, MN USA, 1992)

    Google Scholar 

  39. R. Kwok, XPSPEAK, Free software for the analysis of XPS spectra

  40. N.K. Fernando, A.B. Cairns, C.A. Murray, A.L. Thompson, J.L. Dickerson, E.F. Garman, N. Ahmed, L.E. Ratcliff, A. Regoutz, Structural and electronic effects of X-Ray irradiation on prototypical [M(COD)Cl]2 catalysts. J. Phys. Chem. A 125(34), 7473–7488 (2021)

    Article  Google Scholar 

  41. C. Furlani, G. Mattogno, G. Polzonetti, G. Braca, G. Valentini, Solid state reactions of RhCl(PPh3)3: an XPS study. Inorg. Chim. Acta 69, 199–205 (1983)

    Article  Google Scholar 

  42. C. Furlani, G. Mattogno, G. Polzonetti, G. Sbrana, G. Valentini, Surface oxidation of some Rh(I) compounds and some polymer-supported Rh(I) catalysts. J. Catal. 94(2), 335–342 (1985)

    Article  Google Scholar 

  43. M.G. Mason, Electronic structure of supported small metal clusters. Phys. Rev. B 27(2), 748 (1983)

    Article  ADS  Google Scholar 

  44. R. Zhou, E.W. Zhao, W. Cheng, L.M. Neal, H. Zheng, R.E. Quiñones, H.E. Hagelin-Weaver, C.R. Bowers, Parahydrogen-induced polarization by pairwise replacement catalysis on Pt and Ir nanoparticles. J. Am. Chem. Soc. 137(5), 1938–1946 (2015)

    Article  Google Scholar 

  45. E.V. Pokochueva, D.B. Burueva, L.M. Kovtunova, A.V. Bukhtiyarov, A.Y. Gladky, K.V. Kovtunov, I.V. Koptyug, V.I. Bukhtiyarov, Mechanistic in situ investigation of heterogeneous hydrogenation over Rh/TiO2 catalysts: selectivity, pairwise route and catalyst nature. Faraday Discuss. 229, 161–175 (2021)

    Article  ADS  Google Scholar 

  46. W. Zhang, R. Qin, G. Fu, N. Zheng, Heterogeneous isomerization for stereoselective alkyne hydrogenation to trans-alkene mediated by frustrated hydrogen atoms. J. Am. Chem. Soc. 143(38), 15882–15890 (2021)

    Article  Google Scholar 

  47. A. Serrano-Maldonado, S.S. Rozenel, J.L. Jimenez-Santiago, I. Guerrero-Ríos, E. Martin, Rh nanoparticles from thiolate dimers: selective and reusable hydrogenation catalysts in ionic liquids. Catal. Sci. Technol. 8(17), 4373–4382 (2018)

    Article  Google Scholar 

  48. M. Irfan, N. Eshuis, P. Spannring, M. Tessari, M.C. Feiters, F.P.J.T. Rutjes, Liquid-phase parahydrogen-induced polarization (PHIP) with ligand-capped platinum nanoparticles. J. Phys. Chem. C 118(24), 13313–13319 (2014)

    Article  Google Scholar 

  49. R.I. Kvon, A.V. Nartova, L.M. Kovtunova, V.I. Bukhtiyarov, Compatible XPS study of the composition and electronic state of iridium in bulk and immobilized binuclear [Ir(COD)Cl]2 complexes. J. Struct. Chem. 64(2), 270–275 (2023)

    Article  Google Scholar 

  50. A.V. Nartova, R.I. Kvon, L.M. Kovtunova, I.V. Skovpin, I.V. Koptyug, V.I. Bukhtiyarov, XPS and HR TEM elucidation of the diversity of titania-supported single-site Ir catalyst performance in spin-selective propene hydrogenation. Int. J. Mol. Sci. 24(21), 15643 (2023)

    Article  Google Scholar 

  51. Y. Dai, P. Lu, Z. Cao, C.T. Campbell, Y. Xia, The physical chemistry and materials science behind sinter-resistant catalysts. Chem. Soc. Rev. 47(12), 4314–4331 (2018)

    Article  Google Scholar 

  52. M. Argyle, C. Bartholomew, Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5(1), 145–269 (2015)

    Article  Google Scholar 

  53. D.B. Burueva, K.V. Kovtunov, A.V. Bukhtiyarov, D.A. Barskiy, I.P. Prosvirin, I.S. Mashkovsky, G.N. Baeva, V.I. Bukhtiyarov, A.Y. Stakheev, I.V. Koptyug, Selective single-site Pd-in hydrogenation catalyst for production of enhanced magnetic resonance signals using parahydrogen. Chem. Eur. J. 24(11), 2547–2553 (2018)

    Article  Google Scholar 

  54. C.A. Tolman, Electron donor-acceptor properties of phosphorus ligands. Substituent additivity. J. Am. Chem. Soc. 92(10), 2953–2956 (1970)

    Article  Google Scholar 

  55. M.Y. Darensbourg, E.M. Longridge, V. Payne, J. Reibenspies, C.G. Riordan, J.J. Springs, J.C. Calabrese, Isolation of chromium(0) thiols: molecular structure of (tert-butylmercaptan)pentacarbonylchromium. Inorg. Chem. 29(15), 2721–2726 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

I.V.S. and I.V.K. thank the Russian Science Foundation (grant #22-43-04426) for the support of PHIP experiments. The ITC team thanks the Ministry of Science and Higher Education of the Russian Federation for the access to NMR equipment. The BIC team of thanks (project FWUR-2024-0032) the Ministry of Science and Higher Education of the Russian Federation within the governmental order for the support of catalyst preparation and characterization.

Funding

The ITC team used funding of RSF (grant #22-43-04426) and the Ministry of Science and Higher Education of the Russian Federation (basic funding). The BIC team thanks (project FWUR-2024-0032) the Ministry of Science and Higher Education of the Russian Federation within the governmental order for the support of catalyst preparation and characterization.

Author information

Authors and Affiliations

Authors

Contributions

I.V.K. supervised the work; L.M.K. contributed in catalyst preparation; A.V.N. and R.I.K characterized catalysts by XPS; I.V.S. and D.B.B. conducted the hydrogenation experiments; I.V.S. and D.B.B. wrote the original draft; I.V.K. and V.I.B. reviewed and edited the manuscript. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Igor V. Koptyug.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflicts of interest.

Ethical Approval

The study was conducted without the use of any human and/or animal studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6344 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skovpin, I.V., Burueva, D.B., Kovtunova, L.M. et al. Scavenger-Based Immobilized Rh and Ir Complexes in Hydrogenation of Propyne and Propene with Parahydrogen. Appl Magn Reson (2024). https://doi.org/10.1007/s00723-024-01660-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00723-024-01660-0

Navigation