Skip to main content
Log in

Differentiating Unimodal and Multimodal Distributions in Pulsed Dipolar Spectroscopy Using Wavelet Transforms

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Site-directed spin labeling has enabled protein structure determination using electron spin resonance pulsed dipolar spectroscopy (PDS). Small details in a distance distribution can be key to understanding important protein structure–function relationships. A major challenge has been to differentiate unimodal and overlapped multimodal distance distributions. They often yield similar distributions and dipolar signals. Current model-free distance reconstruction techniques, such as Srivastava-Freed singular value decomposition and Tikhonov regularization, can suppress these small features in uncertainty and/or error bounds, despite being present. In this work, we demonstrate that continuous wavelet transform (CWT) can distinguish PDS signals from unimodal and multimodal distance distributions. We show that periodicity in CWT representation reflects unimodal distributions, which is masked for multimodal cases. This work is meant as a precursor to a cross-validation technique, which could indicate the modality of the distance distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

Data and the code used in this work have been stored in the public github repository (https://github.com/Signal-Science-Lab).

References

  1. W.L. Hubbell, H.S. Mchaourab, C. Altenbach, M.A. Lietzow, Watching proteins move using site-directed spin labeling. Structure 4(7), 779–783 (1996)

    Article  CAS  PubMed  Google Scholar 

  2. W.L. Hubbell, A. Gross, R. Langen, M.A. Lietzow, Recent advances in site-directed spin labeling of proteins. Curr. Opin. Struct. Biol. 8(5), 649–656 (1998)

    Article  CAS  PubMed  Google Scholar 

  3. W.L. Hubbell, D.S. Cafiso, C. Altenbach, Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7(9), 735–739 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. C.S. Klug, J.B. Feix, Methods and applications of site-directed spin labeling EPR spectroscopy. Methods Cell Biol. 84, 617–658 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. P. Borbat, A. Costa-Filho, K. Earle, J. Moscicki, J. Freed, Electron spin resonance in studies of membranes and proteins. Science 291(5502), 266–269 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. P.P. Borbat, H.S. Mchaourab, J.H. Freed, Protein structure determination using long-distance constraints from double-quantum coherence ESR: study of T4 lysozyme. J. Am. Chem. Soc. 124(19), 5304–5314 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. P.P. Borbat, J.H. Freed, Measuring Distances by Pulsed Dipolar ESR Spectroscopy: Spin-labeled Histidine Kinases (Elsevier, New York, 2007)

    Google Scholar 

  8. G. Jeschke, Distance measurements in the nanometer range by pulse EPR. ChemPhysChem 3(11), 927–932 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. G. Jeschke, DEER distance measurements on proteins. Ann. Rev. Phys. Chem. 63, 419–446 (2012)

    Article  CAS  Google Scholar 

  10. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001)

    Book  Google Scholar 

  11. M. Bertero, T.A. Poggio, V. Torre, Ill-posed problems in early vision. Proc. IEEE 76(8), 869–889 (1988)

    Article  Google Scholar 

  12. M. Bertero, Linear Inverse and iII-posed Problems (Elsevier, New York, 1989)

    Book  Google Scholar 

  13. Y.-W. Chiang, P.P. Borbat, J.H. Freed, The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J. Magn. Reson. 172(2), 279–295 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. Y.-W. Chiang, P.P. Borbat, J.H. Freed, Maximum entropy: a complement to Tikhonov regularization for determination of pair distance distributions by pulsed ESR. J. Magn. Reson. 177(2), 184–196 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. S. Brandon, A.H. Beth, E.J. Hustedt, The global analysis of DEER data. J. Magn. Reson. 218, 93–104 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Srivastava, J.H. Freed, Singular value decomposition method to determine distance distributions in pulsed dipolar electron spin resonance. J. Phys. Chem. Lett. 8(22), 5648–5655 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. Srivastava, J.H. Freed, Singular value decomposition method to determine distance distributions in pulsed dipolar electron spin resonance: II. Estimating uncertainty. J. Phys. Chem. A 123(1), 359–370 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  18. T.H. Edwards, S. Stoll, Optimal Tikhonov regularization for DEER spectroscopy. J. Magn. Reson. 288, 58–68 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A.G. Matveeva, Y.V. Yushkova, S.V. Morozov, I.A. Grygor’ev, S.A. Dzuba, Multi-Gaussian Monte Carlo analysis of PELDOR data in the frequency domain. Z. Phys. Chem. 231(3), 671–688 (2017)

    Article  CAS  Google Scholar 

  20. I.O. Timofeev, O.A. Krumkacheva, M.V. Fedin, G.G. Karpova, E.G. Bagryanskaya, Refining spin–spin distance distributions in complex biological systems using multi-Gaussian Monte Carlo analysis. Appl. Magn. Reson. 49, 265–276 (2018)

    Article  CAS  Google Scholar 

  21. S.R. Sweger, S. Pribitzer, S. Stoll, Bayesian probabilistic analysis of DEER spectroscopy data using parametric distance distribution models. J. Phys. Chem. A 124(30), 6193–6202 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S.G. Worswick, J.A. Spencer, G. Jeschke, I. Kuprov, Deep neural network processing of DEER data. Sci. Adv. 4(8), 5218 (2018)

    Article  Google Scholar 

  23. J. Keeley, T. Choudhury, L. Galazzo, E. Bordignon, A. Feintuch, D. Goldfarb, H. Russell, M.J. Taylor, J.E. Lovett, A. Eggeling et al., Neural networks in pulsed dipolar spectroscopy: a practical guide. J. Magn. Reson. 338, 107186 (2022)

    Article  CAS  PubMed  Google Scholar 

  24. L.F. Ibáñez, G. Jeschke, S. Stoll, DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data. Magn. Reson. (Gottingen, Germany) 1(2), 209 (2020)

    Article  Google Scholar 

  25. C.J. Langmead, B.R. Donald, Extracting structural information using time-frequency analysis of protein NMR data, in Proceedings of the Fifth Annual International Conference on Computational Biology, RECOMB01, Montreal, Quebec, Canada, Association for Computing Machinery, New York, NY, United States, (2001), p. 164–175

  26. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  Google Scholar 

  27. W. Popiński, Wavelet transform for time-frequency representation and filtration of discrete signals. Appl. Math. 23(4), 433–448 (1996)

    MathSciNet  Google Scholar 

  28. R. Constable, R. Thornhill, Using the discrete wavelet transform for time-frequency analysis of the surface EMG signal. Biomed. Sci. Instrum. 29, 121–127 (1993)

    CAS  PubMed  Google Scholar 

  29. T. Brotherton, T. Pollard, R. Barton, A. Krieger, L. Marple, Application of time-frequency and time-scale analysis to underwater acoustic transients, in Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (IEEE, 1992), p. 513–516

  30. L. Qin, B. He, A wavelet-based time-frequency analysis approach for classification of motor imagery for brain–computer interface applications. J. Neural Eng. 2(4), 65 (2005)

    Article  MathSciNet  PubMed  Google Scholar 

  31. A.S. Roy, M. Srivastava, Hyperfine decoupling of ESR spectra using wavelet transform. Magnetochemistry 8(3), 32 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. Sinha Roy, M. Srivastava, Analysis of small-molecule mixtures by super-resolved 1H NMR spectroscopy. J. Phys. Chem. A 126(48), 9108–9113 (2022)

    Article  CAS  PubMed  Google Scholar 

  33. I. Daubechies, Ten Lectures on Wavelets (SIAM, New Delhi, 1992)

    Book  Google Scholar 

  34. S. Mallat, A Wavelet Tour of Signal Processing (Elsevier, New York, 1999)

    Google Scholar 

  35. P.S. Addison, The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance (CRC Press, Boca Raton, 2017)

    Book  Google Scholar 

  36. L. Fábregas Ibáñez, G. Jeschke, S. Stoll, DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data. Magn. Reson. 1(2), 209–224 (2020)

    Article  Google Scholar 

Download references

Funding

This research was funded by the NSF Grant No. 2044599 and the National Institute of General Medical Sciences/National Institutes of Health under Grant No. R24GM146107 and R35GM148272.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, ASR, JHF, and MS; methodology, ASR and MS; formal analysis, ASR; writing—original draft preparation, ASR; writing—review and editing, JHF and MS; visualization, ASR; supervision, MS; project administration, MS; funding acquisition, JHF and MS. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Madhur Srivastava.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: DEERLab Script

Appendix A: DEERLab Script

figure b

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha Roy, A., Freed, J.H. & Srivastava, M. Differentiating Unimodal and Multimodal Distributions in Pulsed Dipolar Spectroscopy Using Wavelet Transforms. Appl Magn Reson 55, 219–237 (2024). https://doi.org/10.1007/s00723-023-01616-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01616-w

Navigation