Skip to main content
Log in

Dynamics of Guest Water Molecules in Pillared Mordenite Studied by 1H NMR Relaxation

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The dynamics of H2O molecules confined in mesopores of about 3.4 nm in size, formed by amorphous SiO2 pillars separating 2D mordenite nanolayers, was probed by 1H nuclear magnetic relaxation. 1H nuclear magnetic resonance (NMR) spectra evidence the presence of water with different local surroundings and mobility. The temperature dependence of 1H spin–lattice relaxation T1 and relaxation in rotating frame T indicate the complex behavior of nanoconfined water that can be characterized by different activation energies: freezing (29 kJ/mol), fast rotation (12 kJ/mol), and translational motion (23.6 kJ/mol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, [M.G.S], upon reasonable request.

References

  1. D.W. Breck, Zeolite molecular sieves: structure, chemistry, and use (John Wiley and Sons, New York, 1974)

    Google Scholar 

  2. T. Derbe, S. Temesgen, M. Bitew, Adv. Mater. Sci. Eng. 2021, 6637898 (2021)

    Article  Google Scholar 

  3. I. Rodríguez-iznaga, M.G. Shelyapina, V. Petranovskii, Minerals 12, 1628 (2022)

    Article  ADS  Google Scholar 

  4. E. Koohsaryan, M. Anbia, Chinese J. Catal. 37, 447 (2016)

    Article  Google Scholar 

  5. Y. Kalvachev, T. Todorova, C. Popov, Catalysts 11, 1 (2021)

    Article  Google Scholar 

  6. N.D. Petkovich, A. Stein, Chem. Soc. Rev. 42, 3721 (2013)

    Article  Google Scholar 

  7. H. Zhang, Z. Hu, L. Huang, H. Zhang, K. Song, L. Wang, Z. Shi, J. Ma, Y. Zhuang, W. Shen, Y. Zhang, H. Xu, Y. Tang, ACS Catal. 5, 2548 (2015)

    Article  Google Scholar 

  8. R. Chal, C. Gérardin, M. Bulut, S. VanDonk, ChemCatChem 3, 67 (2011)

    Article  Google Scholar 

  9. P.S. Wheatley, P. Chlubná-Eliášová, H. Greer, W. Zhou, V.R. Seymour, D.M. Dawson, S.E. Ashbrook, A.B. Pinar, L.B. McCusker, M. Opanasenko, J. Čejka, R.E. Morris, Angewandte Chemie Int Edition 53, 13210 (2014)

    Article  Google Scholar 

  10. X. Wang, H. Chen, F. Meng, F. Gao, C. Sun, L. Sun, S. Wang, L. Wang, Y. Wang, Microporous Mesoporous Mater 243, 271 (2017)

    Article  Google Scholar 

  11. X. Jia, W. Khan, Z. Wu, J. Choi, A.C.K. Yip, Adv. Powder Technol. 30, 467 (2019)

    Article  Google Scholar 

  12. M.G. Shelyapina, R.I. Yocupicio-Gaxiola, I.V. Zhelezniak, M.V. Chislov, J. Antúnez-García, F.N. Murrieta-Rico, D.H. Galván, V. Petranovskii, S. Fuentes-Moyado, Molecules 25, 4678 (2020)

    Article  Google Scholar 

  13. M. G. Shelyapina, E. A. Krylova, A. S. Mazur, A. A. Tsyganenko, Y. V Shergin, E. Satikova, and V. Petranovskii, Catalysts 13, 344 (2023)

    Article  Google Scholar 

  14. K. Chen, J. Kelsey, J.L. White, L. Zhang, D. Resasco, ACS Catal. 5, 7480 (2015)

    Article  Google Scholar 

  15. B. Grünberg, T. Emmler, E. Gedat, I. Shenderovich, G.H. Findenegg, H. Limbach, G. Buntkowsky, Chem. Eur. J. 10, 5689 (2004)

    Article  Google Scholar 

  16. Y. Xia, H. Cho, M. Deo, S.H. Risbu, M.H. Bar, S. Sen, Sci. Rep. 10, 5327 (2020)

    Article  ADS  Google Scholar 

  17. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, L. Liu, C.Y. Mou, S.H. Chen, J. Phys. Condens. Matter. 18, S2285 (2006)

    Article  ADS  Google Scholar 

  18. V.I. Chizhik, Y.S. Chernyshev, A.V. Donets, V.V. Frolov, A.V. Komolkin, M.G. Shelyapina, Magnetic resonance and its applications (Springer International Publishing, Cham, 2014)

    Book  Google Scholar 

  19. M.G. Shelyapina, A. Mazur, R.I. Yocupicio-Gaxiola, U. Caudillo-Flores, A. Urtaza, I.A. Rodionov, I.A. Zvereva, V. Petranovskii, Appl. Magn. Reson. 53, 1609 (2022)

    Article  Google Scholar 

  20. R. Valiullin, J. Kärger, K. Cho, M. Choi, R. Ryoo, Microporous Mesoporous Mater 142, 236 (2011)

    Article  Google Scholar 

  21. M. Weigler, E. Winter, B. Kresse, M. Brodrecht, G. Buntkowsky, M. Vogel, Phys. Chem. Chem. Phys. 22, 13989 (2020)

    Article  Google Scholar 

  22. E.W. Hansen, R. Schmidt, M. Sticker, D. Akporiaye, J. Chem. Phys. 99, 4148 (1995)

    Article  Google Scholar 

  23. A. Pajzderska, M.A. Gonzalez, J. Mielcarek, J. Phys. Chem. C 118, 23701 (2014)

    Article  Google Scholar 

  24. R.I. Yocupicio-Gaxiola, V. Petranovskii, J. Antúnez-García, S. Fuentes Moyado, Appl. Nanosci. (Switzerland) 9, 557 (2019)

    Article  ADS  Google Scholar 

  25. I.A. Zvereva, M.G. Shelyapina, M. Chislov, V. Novakowski, E. Malygina, I. Rodríguez-Iznaga, M.A. Hernández, V. Petranovskii, J. Therm. Anal. Calorim. 147, 6147 (2022)

    Article  Google Scholar 

  26. A.P. Lyubartsev, A. Laaksonen, Comput. Phys. Commun. 128, 565 (2000)

    Article  ADS  Google Scholar 

  27. C. Baerlocher and L. B. McCusker, Database of Zeolite Structures http://www.iza-structure.org/databases (2013)

  28. S. Grimme, J. Comput. Chem. 32, 1787 (2006)

    Article  Google Scholar 

  29. H. Fang, P. Kamakoti, P.I. Ravikovitch, M. Aronson, C. Paur, D.S. Sholl, Phys. Chem. Chem. Phys. 15, 12882 (2013)

    Article  Google Scholar 

  30. M.W. Mahoney, W.L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)

    Article  ADS  Google Scholar 

  31. E.A. Krylova, M.G. Shelyapina, P. Nowak, H. Harańczyk, M. Chislov, I.A. Zvereva, A.F. Privalov, M. Becker, M. Vogel, V. Petranovskii, Microporous Mesoporous Mater. 265, 132 (2018)

    Article  Google Scholar 

  32. M.G. Shelyapina, E.A. Krylova, Y.M. Zhukov, I.A. Zvereva, I. Rodriguez-Iznaga, V. Petranovskii, S. Fuentes-Moyado, Molecules 24, 4216 (2019)

    Article  Google Scholar 

  33. E.A. Krylova, M.G. Shelyapina, A. Mazur, D.A. Baranov, A.A. Tsyganenko, V.P. Petranovskii, J. Struct. Chem. 63, 930 (2022)

    Article  Google Scholar 

  34. N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73, 679 (1948)

    Article  ADS  Google Scholar 

  35. H.S. Gutowsky, D.W. McCall, C.P. Slichter, J. Chem. Phys. 21, 279 (1953)

    Article  ADS  Google Scholar 

  36. J.R. Zimmerman, W.E. Brittin, J. Phys. Chem. 61, 1328 (1957)

    Article  Google Scholar 

  37. H.M. McConnell, J. Chem. Phys. 28, 430 (1958)

    Article  ADS  Google Scholar 

  38. V.I. Chizhik, V.S. Kasperovich, M.G. Shelyapina, Y.S. Chernyshev, Int. J. Hydrogen Energy 36, 1601 (2011)

    Article  Google Scholar 

  39. V.I. Chizhik, I.A. Rykov, M.G. Shelyapina, D. Fruchart, Int. J. Hydrog Energy 39, 17416 (2014)

    Article  Google Scholar 

  40. M.G. Shelyapina, N.E. Skryabina, L.S. Surova, A. Dost, A.V. Ievlev, A.F. Privalov, D. Fruchart, J. Alloy. Compd. 778, 962 (2019)

    Article  Google Scholar 

  41. P. Demontis, J. Gulín-González, H. Jobic, M. Masia, R. Sale, G.B. Suffritti, ACS Nano 2, 1603 (2008)

    Article  Google Scholar 

  42. K.N. Han, S. Bernardi, L. Wang, D.J. Searles, J. Phys. Chem. C 121, 381 (2017)

    Article  Google Scholar 

  43. R. Horstmann, L. Hecht, S. Kloth, M. Vogel, Langmuir 38, 6506 (2022)

    Article  Google Scholar 

  44. F. Franks, Water: a comprehensive treatise. Aqueous Solutions of Simple Electrolytes, vol. 3 (Press Plenum, New York, 1973)

    Book  Google Scholar 

  45. D. Ailion, C.P. Slichter, Phys. Rev. Lett. 12, 168 (1964)

    Article  ADS  Google Scholar 

  46. C.P. Slichter, D. Ailion, Phys. Rev. 135, A1099 (1964)

    Article  ADS  Google Scholar 

  47. D.C. Look, I.J. Lowe, J. Chem. Phys. 44, 2995 (1966)

    Article  ADS  Google Scholar 

  48. D. Wolf, Phys. Rev. B 10, 2724 (1974)

    Article  ADS  Google Scholar 

  49. A. Kuhn, M. Kunze, P. Sreeraj, H.D. Wiemhöfer, V. Thangadurai, M. Wilkening, P. Heitjans, Solid State Nucl. Magn. Reson. 42, 2 (2012)

    Article  Google Scholar 

  50. M.G. Shelyapina, D.Y. Nefedov, A.V. Kostromin, O.I. Silyukov, I.A. Zvereva, Ceram. Int. 45, 5788 (2019)

    Article  Google Scholar 

  51. M.G. Shelyapina, A.V. Vyvodtceva, K.A. Klyukin, O.O. Bavrina, Y.S.S. Chernyshev, A.F. Privalov, D. Fruchart, Int. J. Hydrog Energy 40, 17038 (2015)

    Article  Google Scholar 

  52. M.G. Shelyapina, O.I. Silyukov, E.A. Andronova, D.Y. Nefedov, A.O. Antonenko, A. Missyul, S.A. Kurnosenko, I.A. Zvereva, Molecules 26, 1 (2021)

    Article  Google Scholar 

  53. P. Demontis, H. Jobic, M.A. Gonzalez, G.B. Suffritti, J. Phys. Chem. C 113, 12373 (2009)

    Article  Google Scholar 

  54. W.S. Price, H. Ide, Y. Arata, J. Phys. Chem. A 103, 448 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The samples were synthesized at the Center for Nanoscience and Nanotechnology, National Autonomous University of Mexico (CNYN-UNAM), and studied at the Research Park of Saint Petersburg State University: Thermogravimetric and Calorimetric Research Centre, Centre for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics. H’Linh Hmok acknowledges the support of Van Lang University.

Funding

This study was supported by the Russian Science Foundation within the framework of project No. 23-23-00448.

Author information

Authors and Affiliations

Authors

Contributions

MGS: Conceptualization, Validation, Writing—original draft, Writing—review and editing, Supervision, Project administration, Funding acquisition. DYuN, AON, AVI: Data curation, Investigation. H’LH: Investigation. AVE: Investigation, Formal analysis, Writing—review and editing. MIE: Visualization, Formal analysis. RYG: Methodology, VP, JAG, SF: Conceptualization, Writing—review and editing.

Corresponding authors

Correspondence to Marina G. Shelyapina or H’Linh Hmok.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelyapina, M.G., Nefedov, D.Y., Antonenko, A.O. et al. Dynamics of Guest Water Molecules in Pillared Mordenite Studied by 1H NMR Relaxation. Appl Magn Reson 54, 915–928 (2023). https://doi.org/10.1007/s00723-023-01589-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01589-w

Navigation