Skip to main content
Log in

Spatially Resolved Dynamic Longitudinal Relaxometry in Single-Sided NMR

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Relaxation in nuclear magnetic resonance (NMR), both transverse and longitudinal, provides information on microscopic features of a wide variety of systems and may be used to monitor dynamic processes such as cementation, chemical reactions, gelatinization, and evaporation. Dynamic relaxometry, in combination with spatial resolution, is a useful technique that provides deep insight into complex systems evolution. In this work, we explore the range of applicability of single-sided NMR to determine the evaporation kinetics of fluid from porous media. We show that, due to technical experimental restrictions, the determination of the time-dependent amount of fluid in different voids as a function of the position is in general not feasible with transverse relaxation experiments. However, as opposed to common intuition, longitudinal relaxation experiments provide reliable and fast acquisition, compatible with the requirements needed to monitor a water evaporation process from a model oil-reservoir rock sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.P. Korb, Nuclear magnetic relaxation of liquids in porous media. New J. Phys. (2011). https://doi.org/10.1088/1367-2630/13/3/035016

    Article  Google Scholar 

  2. P.T. Callaghan, Translational dynamics and magnetic resonance: principles of pulsed gradient spin echo NMR (Oxford University Press, Oxford, 2011)

    Book  Google Scholar 

  3. B. Maillet, R. Sidi-Boulenouar, P. Coussot, Dynamic NMR relaxometry as a simple tool for measuring liquid transfers and characterizing surface and structure evolution in porous media. Langmuir 38, 15009–15025 (2022). https://doi.org/10.1021/acs.langmuir.2c01918

    Article  Google Scholar 

  4. M. Van Landeghem, J.B. D’Espinose De Lacaillerie, B. Blümich, J.P. Korb, B. Bresson, The roles of hydration and evaporation during the drying of a cement paste by localized NMR. Cem. Concr. Res. 48, 86–96 (2013). https://doi.org/10.1016/j.cemconres.2013.01.012

    Article  Google Scholar 

  5. P. McDonald, J.-P. Korb, J. Mitchell, L. Monteilhet, Surface relaxation and chemical exchange in hydrating cement pastes: a two-dimensional NMR relaxation study. Phys. Rev. E. (2005). https://doi.org/10.1103/PhysRevE.72.011409

    Article  Google Scholar 

  6. P.F. Faure, S. Car, J. Magat, T. Chaussadent, Drying effect on cement paste porosity at early age observed by NMR methods. Constr. Build. Mater. 29, 496–503 (2012). https://doi.org/10.1016/j.conbuildmat.2011.07.012

    Article  Google Scholar 

  7. L. Monteilhet, J.P. Korb, J. Mitchell, P.J. McDonald, Observation of exchange of micropore water in cement pastes by two-dimensional T2–T2 nuclear magnetic resonance relaxometry. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 74, 1–9 (2006). https://doi.org/10.1103/PhysRevE.74.061404

    Article  Google Scholar 

  8. Y.Q. Song, Magnetic resonance of porous media (MRPM): a perspective. J. Magn. Reson. 229, 12–24 (2013). https://doi.org/10.1016/j.jmr.2012.11.010

    Article  ADS  Google Scholar 

  9. Y.-Q. Song, Recent progress of nuclear magnetic resonance applications in sandstones and carbonate rocks. Vadose Zone J. 9, 828 (2010). https://doi.org/10.2136/vzj2009.0171

    Article  Google Scholar 

  10. Y. Zhang, L. Xiao, G. Liao, Y.Q. Song, Direct correlation of diffusion and pore size distributions with low field NMR. J. Magn. Reson. 269, 196–202 (2016). https://doi.org/10.1016/j.jmr.2016.06.013

    Article  ADS  Google Scholar 

  11. E. Lucas-Oliveira, A.G. Araujo-Ferreira, W.A. Trevizan, B. Coutinho, C. Santos, T.J. Bonagamba, Sandstone surface relaxivity determined by NMR T 2 distribution and digital rock simulation for permeability evaluation. J. Pet. Sci. Eng. 193, 107400 (2020). https://doi.org/10.1016/j.petrol.2020.107400

    Article  Google Scholar 

  12. Y. Peysson, M. Fleury, V. Blázquez-Pascual, Drying rate measurements in convection- and diffusion-driven conditions on a shaly sandstone using nuclear magnetic resonance. Transp. Porous Media. 90, 1001–1016 (2011). https://doi.org/10.1007/s11242-011-9829-3

    Article  Google Scholar 

  13. S. Ghoshal, C. Mattea, S. Stapf, Inhomogeneity in the drying process of gelatin film formation: NMR microscopy and relaxation study. Chem. Phys. Lett. 485, 343–347 (2010). https://doi.org/10.1016/j.cplett.2009.12.064

    Article  ADS  Google Scholar 

  14. M. Cocusse, M. Rosales, B. Maillet, R. Sidi-Boulenouar, E. Julien, S. Caré, P. Coussot, Two-step diffusion in cellular hygroscopic (vascular plant-like) materials. Sci. Adv. (2023). https://doi.org/10.1126/sciadv.abm7830

    Article  Google Scholar 

  15. B. Maillet, G. Dittrich, P. Huber, P. Coussot, Diffusionlike drying of a nanoporous solid as revealed by magnetic resonance imaging. Phys. Rev. Appl. (2022). https://doi.org/10.1103/PhysRevApplied.18.054027

    Article  Google Scholar 

  16. G.R. Coates, L. Xiao, M.G. Prammer, NMR logging principles and applications (Halliburton Energy Services, Houston, 2001)

    Google Scholar 

  17. P.J. McDonald, Stray field magnetic resonance imaging. Prog. Nucl. Magn. Reson. Spectrosc. 30, 69–99 (1997). https://doi.org/10.1016/S0079-6565(96)01035-7

    Article  Google Scholar 

  18. K. Smith, A. Burbidge, D. Apperley, P. Hodgkinson, F.A. Markwell, D. Topgaard, E. Hughes, Stray-field NMR diffusion q-space diffraction imaging of monodisperse coarsening foams. J. Colloid Interface Sci. 476, 20–28 (2016). https://doi.org/10.1016/j.jcis.2016.04.053

    Article  ADS  Google Scholar 

  19. R. de Oliveira-Silva, É. Lucas-Oliveira, A.G. de Araújo-Ferreira, W.A. Trevizan, E.L.G. Vidoto, D. Sakellariou, T.J. Bonagamba, A benchtop single-sided magnet with NMR well-logging tool specifications—examples of application. J. Magn. Reson. 322, 106871 (2021). https://doi.org/10.1016/j.jmr.2020.106871

    Article  Google Scholar 

  20. P. Blümler, F. Casanova, CHAPTER 4: Hardware developments: single-sided magnets, in New developments in NMR. ed. by T. Ren (Royal Society of Chemistry, 2016), pp.110–132. https://doi.org/10.1039/9781782628095-00110

    Chapter  Google Scholar 

  21. B. Manz, A. Coy, R. Dykstra, C.D. Eccles, M.W. Hunter, B.J. Parkinson, P.T. Callaghan, A mobile one-sided NMR sensor with a homogeneous magnetic field: the NMR-MOLE. J. Magn. Reson. 183, 25–31 (2006). https://doi.org/10.1016/j.jmr.2006.07.017

    Article  ADS  Google Scholar 

  22. M.N. D’Eurydice, P. Galvosas, D-T2 correlation using the inhomogeneity of single sided NMR devices. Microporous Mesoporous Mater. 205, 40–43 (2015). https://doi.org/10.1016/j.micromeso.2014.08.026

    Article  Google Scholar 

  23. G. Eidmann, R. Savelsberg, P. Blümler, B. Blümich, The NMR MOUSE, a mobile universal surface explorer. J. Magn. Reson. A. 122, 104–109 (1996). https://doi.org/10.1006/jmra.1996.0185

    Article  ADS  Google Scholar 

  24. B. Blümich, P. Blümler, G. Eidmann, A. Guthausen, R. Haken, U. Schmitz, K. Saito, G. Zimmer, The NMR-mouse: construction, excitation, and applications. Magn. Reson. Imaging. 16, 479–484 (1998). https://doi.org/10.1016/S0730-725X(98)00069-1

    Article  Google Scholar 

  25. F. Casanova, J. Perlo, B. Blümich, NMR in inhomogeneous fields. Single-sided NMR (2011). https://doi.org/10.1007/978-3-642-16307-4

    Article  ADS  Google Scholar 

  26. B. Blümich, J. Anders, When the MOUSE leaves the house. Magn. Reson. 2, 149–160 (2021). https://doi.org/10.5194/mr-2-149-2021

    Article  Google Scholar 

  27. B. Blümich, D. Jaschtschuk, C. Rehorn, Advances and adventures with mobile NMR, in Magnetic resonance microscopy. (Wiley, 2022), pp.155–172. https://doi.org/10.1002/9783527827244.ch7

    Chapter  Google Scholar 

  28. B. Blümich, J. Perlo, F. Casanova, Mobile single-sided NMR. Prog. Nucl. Magn. Reson. Spectrosc. 52, 197–269 (2008). https://doi.org/10.1016/j.pnmrs.2007.10.002

    Article  Google Scholar 

  29. B. Blümich, S. Anferova, R. Pechnig, H. Pape, J. Arnold, C. Clauser, Mobile NMR for porosity analysis of drill core sections. J. Geophys. Eng. 1, 177–180 (2004). https://doi.org/10.1088/1742-2132/1/3/001

    Article  Google Scholar 

  30. S. Costabel, T. Hiller, R. Dlugosch, S. Kruschwitz, M. Müller-Petke, Evaluation of single-sided nuclear magnetic resonance technology for usage in geosciences. Meas. Sci. Technol. (2023). https://doi.org/10.1088/1361-6501/ac9800

    Article  Google Scholar 

  31. J. Perlo, F. Casanova, B. Blümich, Profiles with microscopic resolution by single-sided NMR. J. Magn. Reson. 176, 64–70 (2005). https://doi.org/10.1016/j.jmr.2005.05.017

    Article  ADS  Google Scholar 

  32. E.V. Silletta, M.I. Velasco, G.A. Monti, R.H. Acosta, Comparison of experimental times in T1-D and D-T2 correlation experiments in single-sided NMR. J. Magn. Reson. 334, 107112–107118 (2022). https://doi.org/10.1016/j.jmr.2021.107112

    Article  Google Scholar 

  33. H.Y. Carr, E.M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630–638 (1954). https://doi.org/10.1103/PhysRev.94.630

    Article  ADS  Google Scholar 

  34. S. Meiboom, D. Gill, Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688 (1958). https://doi.org/10.1063/1.1716296

    Article  ADS  Google Scholar 

  35. S.W. Provencher, A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 27, 213–227 (1982). https://doi.org/10.1016/0010-4655(82)90173-4

    Article  ADS  Google Scholar 

  36. M.D. Hürlimann, Diffusion and relaxation effects in general stray field NMR experiments. J. Magn. Reson. 148, 367–378 (2001). https://doi.org/10.1006/jmre.2000.2263

    Article  ADS  Google Scholar 

  37. R. Kimmich, Principles of soft-matter dynamics (Springer Netherlands, Dordrecht, 2012). https://doi.org/10.1007/978-94-007-5536-9

    Book  Google Scholar 

  38. P.J. Mcdonald, B. Newling, Stray field magnetic resonance imaging. Rep. Prog. Phys. (1998). https://doi.org/10.1088/0034-4885/61/11/001

    Article  Google Scholar 

  39. M.D. Hürlimann, D.D. Griffin, Spin dynamics of Carr-Purcell-Meiboom-Gill-like sequences in grossly inhomogeneous B(0) and B(1) fields and application to NMR well logging. J. Magn. Reson. 143, 120–135 (2000). https://doi.org/10.1006/jmre.1999.1967

    Article  ADS  Google Scholar 

  40. M.D. Hürlimann, L. Venkataramanan, Quantitative measurement of two-dimensional distribution functions of diffusion and relaxation in grossly inhomogeneous fields. J. Magn. Reson. 157, 31–42 (2002). https://doi.org/10.1006/jmre.2002.2567

    Article  ADS  Google Scholar 

  41. G. Goelman, M.G. Prammer, The CPMG pulse sequence in strong magnetic field gradients with applications to oil-well logging. J. Magn. Reson. A. 113, 11–18 (1995). https://doi.org/10.1006/jmra.1995.1050

    Article  ADS  Google Scholar 

  42. Y.-Q. Song, Categories of coherence pathways for the CPMG sequence. J. Magn. Reson. 157, 82–91 (2002). https://doi.org/10.1006/jmre.2002.2577

    Article  ADS  Google Scholar 

  43. J.L. Markley, W.J. Horsley, M.P. Klein, Spin-lattice relaxation measurements in slowly relaxing complex spectra. J. Chem. Phys. 55, 3604–3605 (1971). https://doi.org/10.1063/1.1676626

    Article  ADS  Google Scholar 

  44. W.E. Kenyon, P.I. Day, C. Straley, J.F. Willemsen, Three-part study of NMR longitudinal relaxation properties of water-saturated sandstones. SPE Form. Eval. 3, 622–636 (1988). https://doi.org/10.2118/15643-pa

    Article  Google Scholar 

  45. M. Esteves Ferreira, M. Del Rodrigues Grande, R. Neumann Barros Ferreira, A. da Ferreirasilva, M. da Nogueira Pereira Silva, J. Tirapu-Azpiroz, E. Lucas-Oliveira, A.G. de Araújo Ferreira, R. Soares, C.B. Eckardt, T.J. Bonagamba, M. Steiner, Full scale, microscopically resolved tomographies of sandstone and carbonate rocks augmented by experimental porosity and permeability values. Sci. Data. 10, 368 (2023). https://doi.org/10.1038/s41597-023-02259-z

    Article  Google Scholar 

  46. P.D. Teal, C. Eccles, Adaptive truncation of matrix decompositions and efficient estimation of NMR relaxation distributions. Inverse Probl. 31, 045010 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. A.G. Yiotis, I.N. Tsimpanogiannis, A.K. Stubos, Y.C. Yortsos, Pore-network study of the characteristic periods in the drying of porous materials. J. Colloid Interface Sci. 297, 738–748 (2006). https://doi.org/10.1016/j.jcis.2005.11.043

    Article  ADS  MATH  Google Scholar 

  48. P. Coussot, Scaling approach of the convective drying of a porous medium. Eur. Phys. J. B 15, 557–566 (2000). https://doi.org/10.1007/s100510051160

    Article  ADS  Google Scholar 

  49. M. Kaviany, M. Mittal, Funicular state in drying of a porous slab. Int. J. Heat Mass Transf. 30, 1407–1418 (1987). https://doi.org/10.1016/0017-9310(87)90172-4

    Article  MATH  Google Scholar 

  50. M.I. Velasco, E.V. Silletta, C.G. Gomez, M.C. Strumia, S. Stapf, G.A. Monti, C. Mattea, R.H. Acosta, Spatially resolved monitoring of drying of hierarchical porous organic networks. Langmuir 32, 2067–2074 (2016). https://doi.org/10.1021/acs.langmuir.5b04230

    Article  Google Scholar 

Download references

Funding

We would like to acknowledge the financial support from CONICET (PIP-1111220130100746CO), SeCyT-UNC (33620180100154CB), and ANPCYT (PICT 2017-0957 and PICT-2019-2802).

Author information

Authors and Affiliations

Authors

Contributions

FAM: investigation, methodology, software. MIV: investigation, methodology, software, writing—review and editing. GAM: writing—review and editing, funding acquisition, supervision. RHA: methodology, funding acquisition, project management, writing—original draft, supervision.

Corresponding author

Correspondence to Rodolfo H. Acosta.

Ethics declarations

Conflict of Interest

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milana, F.A., Velasco, M.I., Monti, G.A. et al. Spatially Resolved Dynamic Longitudinal Relaxometry in Single-Sided NMR. Appl Magn Reson 54, 1349–1363 (2023). https://doi.org/10.1007/s00723-023-01583-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01583-2

Navigation