Skip to main content
Log in

Incorporation of Boron into the AlPO-11 Framework According to 11B and 27Al Solid-State NMR Spectroscopy and First-Principles Calculations

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Various aluminophosphates (AlPO-n) are a class of zeolite-like porous compounds built from alternating AlO4 and PO4 tetrahedra that demonstrate promising results as catalysts and catalyst supports. Their acid–base properties can be varied by substitution of different Al and P sites with different heteroatoms among which boron is of great interest. However, the ability to incorporate boron into the AlPO frameworks seems to be hindered since only very limited data are available on successful synthesis of BAPO (boron-substituted AlPO) materials. Here, we report the application of solid-state 27Al, 11B NMR techniques together with quantum chemical calculations for characterization of BAPO-11 obtained by hydrothermal synthesis. The coordination geometry of the B atoms in the framework is exclusively tetrahedral. However, the fraction of B atoms incorporated in the framework was very low and did not correspond to the B content in the initial composition. Extra-framework trigonal boron was also shown to be present in the sample. DFT calculations allowed us to suggest that boron replaced a small part of the Al1 site of the dehydrated AlPO-11 framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data available from the corresponding author on request.

References

  1. W. Wang, C.-J. Liu, W. Wu, Catal. Sci. Technol. (2019). https://doi.org/10.1039/C9CY00499H

    Article  Google Scholar 

  2. J.A. Martens, P.A. Jacobs, Stud. Surf. Sci. Catal. (1994). https://doi.org/10.1016/S0167-2991(08)60781-8

    Article  Google Scholar 

  3. S.T. Wilson, Introduction to Zeolite Science and Practice (Elsevier Science, Amsterdam, 2001), pp. 229–260 https://doi.org/10.1016/S0167-2991(01)80247-0

  4. R.W. Dorn, M.C. Cendejas, K. Chen, I. Hung, N.R. Altvater, W.P. McDermott, Z. Gan, I. Hermans, A.J. Rossini, ACS Catal. (2020). https://doi.org/10.1021/acscatal.0c03762

    Article  Google Scholar 

  5. S. Balyan, M.A. Haider, T.S. Khan, K.K. Pant, Catal. Sci. Technol. (2020). https://doi.org/10.1039/D0CY00286K

    Article  Google Scholar 

  6. B. Qiu, F. Jiang, W.-D. Lu, B. Yan, W.-C. Li, Z.-C. Zhao, A.-H. Lu, J. Catal. (2020). https://doi.org/10.1016/j.jcat.2020.03.021

    Article  Google Scholar 

  7. H. Koller, C. Fild, R.F. Lobo, Microporous Mesoporous Mater. (2005). https://doi.org/10.1016/j.micromeso.2004.10.035

    Article  Google Scholar 

  8. I.P. Appleyard, R.K. Harris, F.R. Fitch, Zeolites (1986). https://doi.org/10.1016/0144-2449(86)90024-2

    Article  Google Scholar 

  9. S. Qiu, W. Tian, W. Pang, T. Sun, D. Jiang, Zeolites (1991). https://doi.org/10.1016/0144-2449(91)80304-I

    Article  Google Scholar 

  10. H.J. Jakobsen, P. Daugaard, V. Langer, J. Magn. Reson. (1988). https://doi.org/10.1016/0022-2364(88)90211-9

    Article  Google Scholar 

  11. D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. (2002). https://doi.org/10.1002/mrc.984

    Article  Google Scholar 

  12. J.W. Richardson, J.J. Pluth, J.V. Smith, Acta Crystallogr. Sect. B Struct. Sci. (1988). https://doi.org/10.1107/S0108768188003076

    Article  Google Scholar 

  13. G. Kresse, J. Hafner, Phys. Rev. B (1993). https://doi.org/10.1103/PhysRevB.47.558

    Article  Google Scholar 

  14. G. Kresse, J. Furthmüller, Phys. Rev. B (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  15. P.E. Blöchl, Phys. Rev. B (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  16. G. Kresse, D. Joubert, Phys. Rev. B (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  Google Scholar 

  17. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  18. A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. (2009). https://doi.org/10.1103/PhysRevLett.102.073005

    Article  Google Scholar 

  19. H.J. Monkhorst, J.D. Pack, Phys. Rev. B (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  20. C.J. Pickard, F. Mauri, Phys. Rev. B (2001). https://doi.org/10.1103/PhysRevB.63.245101

    Article  Google Scholar 

  21. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, Zeitschrift Für Krist. (2005). https://doi.org/10.1524/zkri.220.5.567.65075

    Article  Google Scholar 

  22. J. Yates, C. Pickard, F. Mauri, Phys. Rev. B (2007). https://doi.org/10.1103/PhysRevB.76.024401

    Article  Google Scholar 

  23. D.F. Khabibulin, E. Papulovskiy, A.S. Andreev, A.A. Shubin, A.M. Volodin, G.A. Zenkovets, D.A. Yatsenko, S.V. Tsybulya, O.B. Lapina, Zeitschrift Für Phys. Chemie (2017). https://doi.org/10.1515/zpch-2016-0822

    Article  Google Scholar 

  24. S. Mintova, N. Barrier, Verified Synthesis of Zeolitic Materials, 3rd edn. (Elsevier (on behalf of the Synthesis Commission of the International Zeolite Association), Amsterdam, 2016)

  25. Y. Huang, Z. Yan, R. Richer, Chem. Mater. (2005). https://doi.org/10.1021/cm050396j

    Article  Google Scholar 

  26. A.K. Cheetham, G. Ferey, T. Loiseau, Angew. Chemie Int. Ed. Engl. (1999). https://doi.org/10.1002/(SICI)1521-3773(19991115)38:22%3c3268::AID-ANIE3268%3e3.0.CO;2-U

    Article  Google Scholar 

  27. M.P.J. Peeters, J.W. de Haan, L.J.M. van de Ven, J.H.C. van Hooff, J. Phys. Chem. (1993). https://doi.org/10.1021/j100122a030

    Article  Google Scholar 

  28. E. Brunner, H. Pfeifer, Acidity and Basicity (Springer Berlin Heidelberg, Berlin, Heidelberg, 2007), pp. 1–43 https://doi.org/10.1007/3829_2007_016

  29. M. Fischer, ChemPhysChem (2021). https://doi.org/10.1002/cphc.202100486

    Article  Google Scholar 

  30. K. Momma, F. Izumi, J. Appl. Crystallogr. (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  31. C. Fild, D.F. Shantz, R.F. Lobo, H. Koller, Phys. Chem. Chem. Phys. (2000). https://doi.org/10.1039/b002134m

    Article  Google Scholar 

  32. Y.Z. Khimyak, J. Klinowski, J. Mater. Chem. (2002). https://doi.org/10.1039/b106911j

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (Grant No 23-13-00151).

Author information

Authors and Affiliations

Authors

Contributions

IVY: writing—original draft, writing—review and editing, investigation (NMR); AVT: resources, investigation (XRD); AAS: formal analysis, methodology; ESP: formal analysis, validation, writing—review and editing; NEC: methodology, visualization; OBL: conceptualization, methodology, supervision, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Ilya V. Yakovlev.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, I.V., Toktarev, A.V., Shubin, A.A. et al. Incorporation of Boron into the AlPO-11 Framework According to 11B and 27Al Solid-State NMR Spectroscopy and First-Principles Calculations. Appl Magn Reson 54, 957–969 (2023). https://doi.org/10.1007/s00723-023-01581-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01581-4

Navigation