Skip to main content
Log in

Spin-Echo Capillary Rheometry Measurements of Foam Flow

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Magnetic resonance methods are ideally suited for the study of fragile, optically opaque flows, like those observed in liquid foams. We demonstrate that the variation of the phase of a simple spin-echo with echo time is a robust measurement of average velocity in the pipe flow of a liquid foam, at both 4.7 T in a magnetic field gradient of 0.227 T/m and at 0.7 T in a gradient of 12.9 T/m. The magnitude of the spin-echo measurement is sufficient to reject the simple Ostwald-de Waele power-law model of pipe flow for this liquid foam. Further investigation will be required to determine whether these data are adequate to distinguish wall slip from the need for a different form of power-law as possible explanations of the discrepancy. At low field, the high gradient limits the range of data that can be collected, which makes distinguishing rheological models more difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

Any of the data sets are available from the corresponding author upon request.

References

  1. S. Cohen-Addad, R. Höhler, O. Pitois, Ann. Rev. Fluid Mech. 45, 241–267 (2013)

    Article  ADS  Google Scholar 

  2. A. Jäsberg, J. Viitala, A. Tanaka, B. Prakash, A.I. Koponen, TAPPI J. 22(1), 51–60 (2023)

    Article  Google Scholar 

  3. P. Johnson, V. Starov, A. Trybala, Curr. Opin. Colloid Interface Sci. 58, 101555 (2022)

    Article  Google Scholar 

  4. J.R. Singer, Science 130, 1652–1653 (1959)

    Article  ADS  Google Scholar 

  5. A. Caprihan, E. Fukushima, Phys. Rep. 198, 195–235 (1990)

    Article  ADS  Google Scholar 

  6. J.R. Singer, J. Phys. E Sci. Instrum. 11, 281–291 (1978)

    Article  ADS  Google Scholar 

  7. J. Stepišnik, Prog. Nucl. Magn. Res. Spec. 17, 187–209 (1985)

    Article  Google Scholar 

  8. F. Lynn Gladden, A.J. Sederman, J. Magn. Res. 229, 2–11 (2013)

    Article  ADS  Google Scholar 

  9. R.A. Assink, A. Caprihan, E. Fukushima, AIChE J. 34, 2077–2079 (1988)

    Article  ADS  Google Scholar 

  10. J.B. German, M.J. McCarthy, J. Agric. Food Chem. 37, 1321–1324 (1989)

    Article  Google Scholar 

  11. C.P. Gonatas, J.S. Leigh, A.D. Yodh, Phys. Rev. Lett. 75, 573–576 (1995)

    Article  ADS  Google Scholar 

  12. P. Stevenson, M.D. Mantle, A.J. Sederman, L.F. Gladden, AIChE J. 53, 290–296 (2006)

    Article  ADS  Google Scholar 

  13. P. Stevenson, A.J. Sederman, M.D. Mantle, X. Li, L.F. Gladden, J. Colloid Interface Sci. 352, 114–120 (2010)

    Article  ADS  Google Scholar 

  14. K. Packer, Mol. Phys. 17, 355–368 (1969)

    Article  ADS  Google Scholar 

  15. J. Guo, M.M.B. Ross, B. Newling, B.J. Balcom, Phys. Rev. Appl. 16, L021001 (2021)

    Article  ADS  Google Scholar 

  16. J. Guo, M.M.B. Ross, B. Newling, M. Lawrence, B.J. Balcom, Phys. Fluids 33, 103609 (2021)

    Article  ADS  Google Scholar 

  17. J. Guo, M. Lawrence, A. Adair, B. Newling, B.J. Balcom, Phys. Fluids 34, 093604 (2022)

    Article  ADS  Google Scholar 

  18. S.J. Gibbs, D.E. Haycock, W.J. Frith, S. Ablett, L.D. Hall, J. Magn. Reson. 125, 43–51 (1997)

    Article  ADS  Google Scholar 

  19. P.M. Glover, P.S. Aptaker, J.R. Bowler, E. Ciampi, P.J. McDonald, J. Magn. Res. 139, 90–97 (1999)

    Article  ADS  Google Scholar 

  20. G. Bennett, J.P. Gorce, J.L. Keddie, P.J. McDonald, H. Berglind, Magn. Res. Imaging 21, 235–241 (2003)

    Article  Google Scholar 

  21. V. Waluch, W.G. Bradley, J. Comp. Asst. Tomogr. 8(4), 594–598 (1984)

    Article  Google Scholar 

  22. A. Salama, Fluids 6, 369 (2021). (18 p)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S. Richard thanks Natural Sciences and Engineering Research Council (NSERC) of Canada for a Canada Graduate Scholarship-Master’s (CGSM) award. B. J. Balcom thanks NSERC of Canada for a Discovery Grant (No. 2022-04003) and the Canada Chairs program for a Research Chair in MRI of Materials (No. 950-230894). B. Newling thanks NSERC of Canada for a Discovery Grant (No. 2023-05880). The authors are particularly pleased to thank Professor Bernhard Blumich for his inspirational contributions to the field of magnetic resonance and for his work in building a community of practitioners in its application.

Funding

S. Richard Natural Sciences and Engineering Research Council (NSERC) Canada for a Canada Graduate Scholarship-Master’s (CGSM) award. B. J. Balcom NSERC of Canada Discovery Grant (No. 2022-04003) and the Canada Chairs Research Chair in MRI of Materials (No. 950-230894). B. Newling NSERC of Canada for a Discovery Grant (No. 2023-05880).

Author information

Authors and Affiliations

Authors

Contributions

JT acquired and analysed all data (with guidance from SR, following original ideas by BJB and BN). JT prepared the manuscript. JT and BN reviewed and revised the manuscript. All authors reviewed the final version.

Corresponding author

Correspondence to Benedict Newling.

Ethics declarations

Conflict of Interest

The authors have no competing interests of a personal or financial nature.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, J., Richard, S., Balcom, B.J. et al. Spin-Echo Capillary Rheometry Measurements of Foam Flow. Appl Magn Reson 54, 1543–1553 (2023). https://doi.org/10.1007/s00723-023-01574-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01574-3

Navigation