Skip to main content
Log in

Quantification of Large Long Periods in Rigid Polymer Systems by 1H Spin Diffusion in HetCor NMR with Heavy Peak Overlap

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Domain sizes in complex polymer materials on the 2- to 400-nm scale can be probed by 1H spin diffusion NMR with 13C detection, which may be competitive with microscopy. In glassy systems, two-dimensional 1H–13C heteronuclear correlation (HetCor) NMR with 1H spin diffusion is the method of choice. Limits to its applicability have been overcome here by improved data analysis. Single-spectrum referencing eliminates the need for asymptotic equilibration and expands the range of accessible domain sizes to long periods of ~ 400 nm and makes time-consuming measurements with series of mixing times unnecessary. Systematic 1H peak overlap correction in two-domain systems after local equilibration within 3 ms greatly expands the applicability of quantitative long-period determination from HetCor NMR with 1H spin diffusion. It usually works even if the 1H spectra of the two components are fully overlapped, as long as their fractional intensity contributions to at least one 1H peak are distinctly different. This is documented for microphase-separated diblock copolymers of polystyrene and PMMA (alkyl slices) and of polystyrene and poly(4-vinyl pyridine), a polystyrene analogue. Based on extensive spin diffusion simulations utilizing coarse graining to reduce simulation times, convenient graphs are presented that enable conversion of a measured equilibration percentage to a tight range of minimum and maximum long period, as a robust, model-independent result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of Data and Materials

The NMR data generated in the course of the current study are available from the corresponding author on reasonable request. The materials used in this study are available from Polymer Source, Inc. (Dorval, QC, Canada).

References

  1. R.A. Assink, H-1 spin diffusion between polyurethane microphases. Macromolecules 11, 1233 (1978)

    Article  ADS  Google Scholar 

  2. P. Caravatti, P. Neuenschwander, R.R. Ernst, Characterization of heterogeneous polymer blends by two-dimensional proton spin diffusion spectroscopy. Macromolecules 18, 119–122 (1985)

    Article  ADS  Google Scholar 

  3. J.R. Havens, D.L. VanderHart, Morpholgy of poly (ethylene terephthalate) fibers as studied by multiple-pulse NMR. Macromolecules 18, 1663–1676 (1985)

    Article  ADS  Google Scholar 

  4. J. Clauss, K. Schmidt-Rohr, H.W. Spiess, Determination of domain sizes in polymers. Acta Polymer 44, 1–17 (1993)

    Article  Google Scholar 

  5. S. Kaplan, Compatibility of TPD/polycarbonate blends by carbon-13-proton HETCOR in the solid state. Macromolecules 26, 1060–1064 (1993)

    Article  ADS  Google Scholar 

  6. J.L. White, P.A. Mirau, Heteronuclear correlation in solid polymers: identification of hydrogen bond donors and acceptors in miscible polymer blends. Macromolecules 27, 1648–1650 (1994)

    Article  ADS  Google Scholar 

  7. F. Mellinger, M. Wilhelm, H.W. Spiess, Calibration of 1H NMR spin diffusion coefficients for mobile polymers through transverse relaxation measurements. Macromolecules 32, 4686–4691 (1999)

    Article  ADS  Google Scholar 

  8. X. Jia, J. Wolak, X. Wang, J.L. White, Independent calibration of H-1 spin-diffusion coefficients in amorphous polymers by intramolecular polarization transfer. Macromolecules 36, 712–718 (2003)

    Article  ADS  Google Scholar 

  9. A. Buda, D.E. Demco, M. Bertmer, B. Blümich, V.M. Litivinov, J.P. Penning, Complex morphology of melt-spun nylon-6 fibers investigated by 1H double-quantum-filtered NMR spin-diffusion. Chem. Phys. Chem. 5, 876–883 (2004)

    Article  Google Scholar 

  10. M.A. Voda, D.E. Demco, A. Voda, T. Schauber, M. Adler, T. Dabisch, A. Adams, M. Baias, B. Blümich, Morphology of thermoplastic polyurethanes by 1H spin diffusion. Macromolecules 39, 4802–4810 (2006)

    Article  ADS  Google Scholar 

  11. C. Hedesiu, R. Kleppinger, D.E. Demco, A. Buda, B. Blümich, K. Remerie, V.M. Litvinov, The effect of temperature and annealing on the phase composition, molecular mobility and the thickness of domains in high-density polyethylene. Polymer 48, 763–777 (2007)

    Article  Google Scholar 

  12. K. Schäler, M. Roos, P. Micke, Y. Golitsyn, A. Seidlitz, T. Thurn-Albrecht, H. Schneider, G. Hempel, K. Saalwächter, Basic principles of static proton low-resolution spin diffusion NMR in nanophase-separated materials with mobility contrast, Solid State. NMR 72, 50–63 (2015)

    Google Scholar 

  13. M. Goldman, L. Shen, Spin-spin relaxation in LaF3. Phys. Rev. 144, 321 (1966)

    Article  ADS  Google Scholar 

  14. S. Spiegel, K. Schmidt-Rohr, C. Boeffel, H.W. Spiess, 1H spin diffusion coefficient of highly mobile polymers. Polymer 34, 4566–4569 (1993)

    Article  Google Scholar 

  15. P. Caravatti, L. Braunschweiler, R.R. Ernst, Heteronuclear correlation spectroscopy in rotating solids. Chem. Phys. Lett. 100, 305–310 (1983)

    Article  ADS  Google Scholar 

  16. X. Jia, X. Wang, A.E. Tonelli, J.L. White, Two-dimensional spin-diffusion NMR reveals differential mixing in biodegradable polymer blends. Macromolecules 38, 2775–2780 (2005)

    Article  ADS  Google Scholar 

  17. J.-D. Mao, K. Schmidt-Rohr, Absence of mobile carbohydrate domains in dry humic substances proven by NMR, and implications for organic-contaminant sorption. Environ. Sci. Technol. 40, 1751–1756 (2005)

    Article  ADS  Google Scholar 

  18. P. Duan, M.S. Lamm, F. Yang, W. Xu, D. Skomski, Y. Su, K. Schmidt-Rohr, Quantifying molecular mixing and heterogeneity in pharmaceutical dispersions at sub-100 nm resolution by spin diffusion NMR. Mol. Pharm. 17, 3567–3580 (2020)

    Article  Google Scholar 

  19. J. Peng, D.H. Kim, W. Knoll, Y. Xuan, B. Li, Y. Han, Morphologies in solvent-annealed thin films of symmetric diblock copolymer. J. Chem. Phys. 125, 064702 (2006)

    Article  ADS  Google Scholar 

  20. X. Zhang, K.D. Harris, N.L.Y. Wu, J.N. Murphy, J.M. Buriak, Fast assembly of ordered block copolymer nanostructures through microwave annealing. ACS Nano 4, 7021–7029 (2010)

    Article  Google Scholar 

  21. F. Ferrarese Lupi, T.J. Giammaria, M. Ceresoli, G. Seguini, K. Sparnacci, D. Antonioli, V. Gianotti, M. Laus, M. Perego, Rapid thermal processing of self-assembling block copolymer thin films. Nanotechnol. 24, 315601 (2013)

    Article  ADS  Google Scholar 

  22. M. Ceresoli, F.G. Volpe, G. Seguini, D. Antonioli, V. Gianotti, K. Sparnacci, M. Laus, M. Perego, Scaling of correlation length in lamellae forming PS-b-PMMA thin films upon high temperature rapid thermal treatments. J. Mater. Chem. C 3, 8618–8624 (2015)

    Article  Google Scholar 

  23. S. Yuan, P. Duan, D.L. Berthier, G. Léon, H. Sommer, J.-Y. de Saint-Laumer, K. Schmidt-Rohr, Multinuclear solid-state NMR of complex nitrogen-rich polymeric microcapsules: weight fractions, spectral editing, component mixing, and persistent radicals. Solid State NMR 106, 101650 (2020)

    Article  Google Scholar 

  24. A.E. Bennett, C.M. Rienstra, M. Auger, K.V. Lakshmi, R.G. Griffin, Heteronuclear decoupling in rotating solids. J. Chem. Phys. 103, 6951–6958 (1995)

    Article  ADS  Google Scholar 

  25. W.T. Dixon, Spinning-sideband-free and spinning-sideband-only NMR spectra of spinning samples. J. Chem. Phys. 77, 1800–1809 (1982)

    Article  ADS  Google Scholar 

  26. Q. Chen, K. Schmidt-Rohr, Measurement of the local 1H spin diffusion coefficient in homogeneous polymers. Solid State NMR 29, 142–152 (2006)

    Article  Google Scholar 

  27. D.L. VanderHart, G.B. McFadden, Some perspectives on the interpretation of proton NMR spin diffusion data in terms of polymer morphologies. Solid State NMR 7, 45–66 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. H. Sommer and dsm-firmenich for generous support of this work. The solid-state NMR spectrometer utilized in this work was funded by the NSF MRI program (Award No. 1726346).

Funding

Generous, sustained funding of this work was provided by dsm-firmenich.

Author information

Authors and Affiliations

Authors

Contributions

KSR planned the experiments and analysis methods. SY prepared samples by careful annealing. SY, ZS, and KSR performed the NMR experiments, processed the data, and prepared the figures. ZS performed spin-diffusion simulations to produce best-fit curves and long-period graphs. KSR wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Klaus Schmidt-Rohr.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare.

Ethical Approval

Not applicable.

Additional information

Prepared for the special issue in honor of Prof. Bernhard Blümich on the occasion of his 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4010 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Yuan, S. & Schmidt-Rohr, K. Quantification of Large Long Periods in Rigid Polymer Systems by 1H Spin Diffusion in HetCor NMR with Heavy Peak Overlap. Appl Magn Reson 54, 1135–1163 (2023). https://doi.org/10.1007/s00723-023-01570-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01570-7

Navigation