Skip to main content
Log in

Electron Spin Relaxation of SO2 and SO3 Radicals in Solid Na2S2O4, Na2S2O5, and K2S2O5

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Electron spin relaxation times are reported for the SO2 radical in solid Na2S2O4 and K2S2O5, and the SO3 radicals in Na2S2O5, and K2S2O5. Echo envelope modulation was observed for the radicals in the Na+ salts and characterized by HYSCORE. Tm and T1 were measured using spin echo methods from 40 to 293 K and by long-pulse saturation recovery at 293 K. At low temperature Tm for the radicals in K2S2O5 (~ 14 μs) is longer than for the radicals in Na2S2O5 (Tm ~ 7 μs) or Na2S2O4 (Tm ~ 4 μs), which is attributed to the low magnetic moment of K+. The shorter value of Tm in Na2S2O4 is attributed in part to higher spin concentration. Tm decreases with increasing temperature as T1 approaches Tm. In each lattice there is a distribution of spin lattice relaxation times that may be due to distributions in interspin distances. The long components in the T1 distributions are longer for SO3 than for SO2. In 0.5 M NaOH solution at 293 K SO2 has a relaxation-determined Lorentzian peak-to-peak linewidth of about 0.7 G, and T1 ~ T2 ~ 100 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

Data are available from the authors on request.

References

  1. P.W. Atkins, M.C.R. Symons, The radical ion SO3-, in The Structure of Inorganic Radicals (Elsevier Publishing Company, Amsterdam, 1967), pp. 172–173

  2. G.R. Eaton, S.S. Eaton, J.W. Stoner, R.W. Quine, G.A. Rinard, A.I. Smirnov, R.T. Weber, J. Krzystek, A.K. Hassan, L.C. Brunel, A. Demortier, Multifrequency electron paramagnetic resonance of ultramarine blue. Appl. Magn. Reson. 21, 563–570 (2001)

    Article  Google Scholar 

  3. E.G. Janzen, Electron spin resonance study of the SO2. Formation in the thermal decomposition of sodium dithionite, sodium and potassium metabisulfite, and sodium hydrogen sulfite. J. Phys. Chem. 76, 157–162 (1972)

    Article  Google Scholar 

  4. J.D. Dunitz, The structure of sodium dithionite and the nature of the dithionite ion. Acta Cryst. 9, 579–586 (1956)

    Article  Google Scholar 

  5. J.B. Weinrach, D.R. Meyer, J. Guy, J.T.P.E. Michalski, K.L. Carter, D.S. Grubisha, D.W. Bennett, A structural study of sodium dithionite and its ephemeral dihydrate: a new conformation for the dithionite ion. J. Cryst. Spectros. Res. 22, 291–301 (1992)

    Article  Google Scholar 

  6. W.H. Zachariasen, The crystal lattice f potassium pyrosulphite, K2S2O5, and the structure of the pyrosulphite group. Phys. Rev. 40, 923–925 (1932)

    Article  ADS  Google Scholar 

  7. I. Lindqvist, M. Mörtsell, The structure of potassium pyrosulfite and the nature of the pyrosulfite ion. Acta Cryst. 10, 406–409 (1957)

    Article  Google Scholar 

  8. S.E. Bogushevich, I.I. Ugolev, Inorganic EPR dosimeter for medical radiology. Appl. Rad. Isot. 52, 1217–1219 (2000)

    Article  Google Scholar 

  9. M. Danilczuk, H. Gustafsson, M.D. Sastry, E. Lund, A. Lund, Ammonium dithionite—a new material for highly sensitive EPR dosimetry. Spectrochim. Acta A 69, 18–21 (2008)

    Article  ADS  Google Scholar 

  10. M.P. Baran, O.A. Bugay, S.P. Kolesnik, V.M. Maksimenko, V.V. Teslenko, T.L. Petrenko, M.F. Desrosier, Barium dithionite as an EPR dosimeter. Radiat. Protect. Dosimetry 120, 202–204 (2006)

    Article  Google Scholar 

  11. H. Gustafsson, A. Lund, E.O. Hole, E. Sagstuen, SO3 radicals for EPR dosimetry: X- and Q-band EPR study and LEFT dependency of crystalline potassium dithionite. Radiat. Meas. 59, 123–128 (2013)

    Article  Google Scholar 

  12. A.B. Rech, A. Kinoshita, P.M. Donate, O.R. Nascimento, O. Baffa, Electron spin resonance dosimetry studies of irradiated sulfite salts. Molecules 27, 7047 (2022)

    Article  Google Scholar 

  13. A.A. Westenberg, Use of ESR for the quantitative determination of gas phase atom and radical concentrations. Prog. React. Kinet. 7, 23–82 (1975)

    Google Scholar 

  14. D.S. Burch, W.H. Tanttila, M. Mizushima, X-band ESR spectrum of nitrogen dioxide. J. Chem. Phys. 61, 1607–1612 (1974)

    Article  ADS  Google Scholar 

  15. L.O. Andersson, EPR investigation of NO2 and CO2- and other radicals in beryl. Phys. Chem. Miner. 37, 435–451 (2010)

    Article  ADS  Google Scholar 

  16. D.W. Ovenall, D.H. Whiffen, Electron spin resonance and structure of the CO2- ion. Mol. Phys. 4, 135–144 (1961)

    Article  ADS  Google Scholar 

  17. M.C.R. Symons, S.P. Mishra, Linear σ* and bent pseudo-π* (NCBr)- radical anions formed by ionizing radiation. J. C. S. Faraday Trans. I(78), 3019–3024 (1982)

    Article  Google Scholar 

  18. L.C. Dickinson, M.C.R. Symons, Part 32.—Variation in the E. S. R. linewidths of ClO2 and SO2 in water-butyl alcohol mixtures. Trans. Faraday Soc. 66, 1334–1339 (1970)

    Article  Google Scholar 

  19. P.W. Atkins, M.C.R. Symons, Tetra-atomic Radicals, in The Structure of Inorganic Radicals (Elsevier Publishing Company, Amsterdam, 1967), pp.162–186

    Google Scholar 

  20. W.G. Hodgson, A. Neaves, C.A. Parker, Detection of free radicals in sodium dithionite by paramagnetic resonance. Nature 178, 489 (1956)

    Article  ADS  Google Scholar 

  21. J.E. McPeak, R.W. Quine, S.S. Eaton, G.R. Eaton, An X-band saturation recovery EPR spectrometer based on an arbitrary waveform generator. Rev. Sci. Instrum. 90, 024102 (2019)

    Article  ADS  Google Scholar 

  22. T. Ngendahimana, R. Ayikpoe, J.A. Latham, G.R. Eaton, S.S. Eaton, Comparison of spin lattice relaxation rates for transition metal complexes obtained by multiple methods of analyzing inversion recovery data. J. Inorg. Biochem. 201, 110806 (2019)

    Article  Google Scholar 

  23. M. Laviolette, M. Auger, S. Desilets, Monitoring the aging dynamics of glycidyl azide polyurethane for two Kohlrausch-related relaxation time distributions. Macromolecules 32, 1602–1610 (1999)

    Article  ADS  Google Scholar 

  24. G.C. Borgia, R.J.S. Brown, P. Fantazzini, Uniform-penalty inversion of multiexponential decay data. J. Magn. Reson. 132, 65–77 (1998)

    Article  ADS  Google Scholar 

  25. G.C. Borgia, R.J.S. Brown, P. Fantazzini, Uniform-penalty inversion of multiexponential decay data II. Data spacing, T2 data, systematic errors, and diagnostics. J. Magn. Reson. 147, 273–285 (2000)

    Article  ADS  Google Scholar 

  26. S.S. Eaton, G.R. Eaton, Relaxation mechanisms, in EPR Spectroscopy: Fundamentals and Methods. ed. by D. Goldfarb, S. Stoll (Wiley, Chichester, 2018), pp.175–192

    Google Scholar 

  27. J.W. Orton, Electron Paramagnetic Resonance: An Introduction to Transition Group Ions in Crystals (Gordon and Breach, N. Y., 1968)

  28. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, Oxford, 1970)

    Google Scholar 

  29. J. Murphy, Spin-lattice relaxation due to local vibrations with temperature-independent amplitudes. Phys. Rev. 145, 241–247 (1966)

    Article  ADS  Google Scholar 

  30. R.G. Rinker, T.P. Gordon, D.M. Mason, W.H. Corcoran, The presence of the SO2- radical in aqueous solutions of sodium dithionite. J. Phys. Chem. 63, 302 (1959)

    Article  Google Scholar 

  31. R. Das, B. Venkataraman, R.M. Mineeva, L.V. Bershov, Electron spin-lattice relaxation of SO3- in a single crystal of barite. Phys. Chem. Miner. 17, 24–26 (1990)

    Article  ADS  Google Scholar 

  32. G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, Quantitative EPR (Springer /Wien, New York, 2010)

    Book  Google Scholar 

  33. J.R. Harbridge, G.R. Eaton, S.S. Eaton, Impact of spectral diffusion on apparent relaxation times for the stable radical in irradiated glycylglycine, modern applications of EPR/ESR: from biophysics to materials science, in Proceedings of the Asia-Pacific EPR/ESR Symposium, 1st, Kowloon, Hong Kong, Jan. 20–24, 1997 (1998), pp. 220–225

  34. S. Stoll, A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006)

    Article  ADS  Google Scholar 

  35. R. Tapramaz, F. Koksal, Electron spin resonance of gamma-irradiated K2S2O5 single crystals. Radiat. Phys. Chem. 40, 55–57 (1992)

    ADS  Google Scholar 

  36. A. Zecevic, G.R. Eaton, S.S. Eaton, M. Lindgren, Dephasing of electron spin echoes for nitroxyl radicals in glassy solvents by non-methyl and methyl protons. Mol. Phys. 95, 1255–1263 (1998)

    Article  ADS  Google Scholar 

  37. V.M. Meyer, S.S. Eaton, G.R. Eaton, Temperature dependence of electron spin relaxation of 2,2-diphenyl-1-picrylhydrazyl in polystyrene. Appl. Magn. Reson. 44, 509–517 (2013)

    Article  Google Scholar 

  38. S.S. Eaton, G.R. Eaton, Measurement of spin-spin distances from the intensity of the EPR half-field transition. J. Am. Chem. Soc. 104, 5002–5003 (1982)

    Article  Google Scholar 

  39. S.S. Eaton, K.M. More, B.M. Sawant, G.R. Eaton, Use of the ESR half-field transition to determine the interspin distance and the orientation of the interspin vector in systems with two unpaired electrons. J. Am. Chem. Soc. 105, 6560–6567 (1983)

    Article  Google Scholar 

  40. M. Wencka, S. Lijewski, S.K. Hoffmann, Dynamics of CO2-radiation defects in natural calcite studied by ESR, electron spin echo, and electron spin relaxation. J. Phys. Cond. Matt. 20, 255237 (2008)

    Article  ADS  Google Scholar 

  41. J. Goslar, S. Lijewski, S.K. Hoffmann, A. Jankowska, S. Kowalak, Structure and dynamics of S3 radicals in ultramarine-type pigment based on zeolite A: electron spin resonance and electron spin echo studies. J. Chem. Phys. 130, 204504 (2009)

    Article  ADS  Google Scholar 

  42. D. Arieli, E.W. Vaughan, D. Goldfarb, New synthesis and insight into the structure of blue ultramarine pigments. J. Am. Chem. Soc. 126, 5776–5788 (2004)

    Article  Google Scholar 

  43. S. Kowalak, A. Jankowska, S. Zeidler, A.B. Wieckowski, Sulfur radicals embedded in various cages of ultramarine analogs prepared from zeolites. J. Solid State Chem. 180, 1119–1124 (2007)

    Article  ADS  Google Scholar 

  44. A. Reuveni, Z. Luz, B.L. Silver, ESR of SO2. J. Chem. Phys. 53, 4619–4623 (1970)

    Article  ADS  Google Scholar 

  45. L. Burlamacchi, G. Guarini, Mechanism of decomposition of sodium dithionite in aqueous solution. Trans. Faraday Soc. 65, 496–502 (1969)

    Article  Google Scholar 

  46. P.W. Atkins, M.C.R. Symons, The radical ion SO2-, in The Structure of Inorganic Radicals (Elsevier Publishing Company Amsterdam, 1967), pp. 146–147

    Google Scholar 

  47. S.E. Bogushevich, I.I. Ugolev, Stabilization of ion-radicals in the structure of calcium sulfite. J. Appl. Spectrosc. 72, 419–425 (2005)

    Article  ADS  Google Scholar 

  48. I.D. Ryabov, L.V. Bershov, I.G. Ganeev, Electron paramagnetic resonance of PO22 and SO2 radicals in barite. Phys. Chem. Miner. 16, 374–377 (1989)

    Article  ADS  Google Scholar 

  49. G.W. Chantry, A. Horsfield, J.R. Morton, J.R. Rowlands, D.H. Whiffen, The optical and electron resonance spectra of SO3. Mol. Phys. 5, 233–239 (1962)

    Article  ADS  Google Scholar 

  50. I.D. Ryabov, L.V. Bershov, A.V. Speranskiy, I.G. Ganeev, Electron paramagnetic resonance of PO32 and SO3 in anhydrige, celestite and barite: the hyperfine structure and dynamics. Phys. Chem. Miner. 10, 21–26 (1983)

    Article  ADS  Google Scholar 

Download references

Funding

This work was funded in part by the National Institutes of Health R01 CA262159 (GRE, PI), and in part by the University of Denver.

Author information

Authors and Affiliations

Authors

Contributions

GA, DGM, TH, SSE and GRE performed experiments, analyzed data, and contributed to drafts of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Gareth R. Eaton.

Ethics declarations

Conflict of interest

The authors have no competing financial or personal interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amassah, G., Mitchell, D.G., Hovey, T.A. et al. Electron Spin Relaxation of SO2 and SO3 Radicals in Solid Na2S2O4, Na2S2O5, and K2S2O5. Appl Magn Reson 54, 849–867 (2023). https://doi.org/10.1007/s00723-023-01569-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01569-0

Navigation