Skip to main content
Log in

Effects of Salt Precipitation in the Topmost Soil Layer Investigated by NMR

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The drying of highly concentrated aqueous salt solutions in sand and soil has been investigated by one-dimensional spatially resolved low-field relaxation measurements of 1H nuclei in water as well as high-field MRI of 1H and 23Na nuclei of water and sodium ions. Water evaporates until the solutions in the solid matrix reach saturation conditions, when salt begins to crystallize. Depending on salt type and conditions, such as actual soil water content and air humidity, this crystallization can occur above (efflorescent) or below (subflorescent) the soil surface. Both effects occur in nature and affect the evaporation behavior of water. The formation of salt precipitate domains is demonstrated by MRI, where the precipitate domains remain penetrable to water. Complete drying is achieved in the top 2 mm of soil with the exception of strongly hygroscopic perchlorates which maintain a constant amount of liquid water under ambient laboratory conditions and dry air. This situation is considered similar to the co-existence of perchlorates and water in strongly eutectic mixtures on Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. J.W. Hopmans et al., Critical knowledge gaps and research priorities in global soil salinity, in Advances in agronomy, vol. 169, ed. by D.L. Sparks (Elsevier, New York, 2021), pp.1–191

    Google Scholar 

  2. C. Alves et al., Heritage 4(3), 1554–1565 (2021). https://doi.org/10.3390/heritage4030086

    Article  Google Scholar 

  3. F. Casanova, J. Perlo, B. Blümich, Single sided NMR (Springer, Berlin., 2011)

    Book  Google Scholar 

  4. B. Blümich, S. Haber-Pohlmeier, W. Zia, Compact NMR (De Gruyter, Berlin., 2014)

    Book  Google Scholar 

  5. S. Stapf, S. Han, NMR imaging in chemical engineering (Wiley-VCH, Weinheim, 2006)

    Google Scholar 

  6. J. Lai et al., Surv Geophys 43(3), 913–957 (2022). https://doi.org/10.1007/s10712-022-09705-4

    Article  ADS  Google Scholar 

  7. Y.Q. Song, R. Kausik, Progr Nucl Magn Reson Spectrosc 112, 17–33 (2019). https://doi.org/10.1016/j.pnmrs.2019.03.002

    Article  Google Scholar 

  8. R.J.S. Brown et al., Concepts Magn Reson 13(6), 335–413 (2001)

    Article  Google Scholar 

  9. G.J. Hirasaki, S.W. Lo, Y. Zhang, Magn Reson Imaging 21(3–4), 269–277 (2003). https://doi.org/10.1016/s0730-725x(03)00135-8

    Article  Google Scholar 

  10. R. Kausik et al., Petrophysics 57(4), 339–350 (2016)

    Google Scholar 

  11. P.F. Zhang et al., Marine Petr Geol 89, 775–785 (2018). https://doi.org/10.1016/j.marpetgeo.2017.11.015

    Article  ADS  Google Scholar 

  12. A. Haber et al., Vadose Zone J. 9, 1–5 (2010)

    Article  Google Scholar 

  13. B. Blümich et al., N J Phys 13, 015003 (2011)

    Article  Google Scholar 

  14. O. Sucre et al., J. Hydrol. 406, 30–38 (2011)

    Article  ADS  Google Scholar 

  15. J. Perlo et al., J Magn Reson. 233, 74–79 (2013). https://doi.org/10.1016/j.jmr.2013.05.004

    Article  ADS  Google Scholar 

  16. S. Haber-Pohlmeier et al., Molecules (2021). https://doi.org/10.3390/molecules26175130

    Article  Google Scholar 

  17. D. Oligschläger et al., Magn Reson Chem. 53(1), 48–57 (2015). https://doi.org/10.1002/mrc.4153

    Article  Google Scholar 

  18. G.D. Aumen, G. Zwerg, Ein Herz für Wühlmäuse: Bentonit zur Verbesserung sandiger und schluffiger Böden. (Natur und Tier, Münster, Germany, 2024)

    Google Scholar 

  19. S. Merz et al., Water Resour Res 50(6), 5184–5195 (2014). https://doi.org/10.1002/2013wr014809

    Article  ADS  Google Scholar 

  20. J. Zhao, H.J. Luo, X. Huang, Crystals (2020). https://doi.org/10.3390/cryst10060444

    Article  Google Scholar 

  21. L. Pel, H. Huinink, K. Kopinga, Magn Reson Imaging 21(3–4), 317–320 (2003). https://doi.org/10.1016/s0730-725x(03)00161-9

    Article  Google Scholar 

  22. U. Nachshon et al., Geophys Res Lett 45(12), 6100–6108 (2018). https://doi.org/10.1029/2018gl078363

    Article  ADS  Google Scholar 

  23. L.A. Rijniers et al., Magn Reson Imaging 23(2), 273–276 (2005). https://doi.org/10.1016/j.mri.2004.11.023

    Article  Google Scholar 

  24. S. Gravelle, S. Haber-Pohlmeier, C. Mattea, S. Stapf, C. Holm, A. Schlaich, Langmuir 39(22), 7548–7556 (2023). https://doi.org/10.1021/acs.langmuir.3c00036

    Article  Google Scholar 

  25. M.N. Rad, N. Shokri, M. Sahimi, Phys. Rev. E (2013). https://doi.org/10.1103/PhysRevE.88.032404

    Article  Google Scholar 

  26. V. Chevrier, J. Hanley, T. Altheide, Geophys Res Lett. (2009). https://doi.org/10.1029/2009gl040523

    Article  Google Scholar 

  27. A.F. Davila et al., Int J Astrobiol 12(4), 321–325 (2013). https://doi.org/10.1017/s1473550413000189

    Article  ADS  Google Scholar 

  28. B.C. Clark, S.P. Kounaves, Int J Astrobiol. 15(4), 311–318 (2016). https://doi.org/10.1017/s1473550415000385

    Article  ADS  Google Scholar 

  29. M.H. Hecht et al., Science 325(5936), 64–67 (2009). https://doi.org/10.1126/science.1172466

    Article  ADS  Google Scholar 

  30. R.V. Gough et al., Earth Planet Sci Lett. 312(3–4), 371–377 (2011). https://doi.org/10.1016/j.epsl.2011.10.026

    Article  ADS  Google Scholar 

  31. L. Ojha et al., Nat Geosci. 8(11), 829 (2015). https://doi.org/10.1038/ngeo2546

    Article  ADS  Google Scholar 

  32. S.M.S. Shokri-Kuehni et al., Water Resour Res. (2020). https://doi.org/10.1029/2019wr026707

    Article  Google Scholar 

  33. B. Gizatullin, E. Papmahl, C. Mattea, S. Stapf, Appl Magn Reson 52(5), 633–648 (2021). https://doi.org/10.1007/s00723-021-01331-4

    Article  Google Scholar 

  34. A. Perelman et al., Plant Soil 454(1–2), 171–185 (2020). https://doi.org/10.1007/s11104-020-04628-8

    Article  Google Scholar 

  35. C. Wagner et al., GESTIS substance database (IFA Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung, Berlin, 2023)

    Google Scholar 

  36. H.Y. Carr, E.M. Purcell, Phys Rev 94(3), 630–638 (1954). https://doi.org/10.1103/PhysRev.94.630

    Article  ADS  Google Scholar 

  37. G.R. Coates, L. Xiao, M.G. Prammer, NMR logging principles and applications (HalliburtonEnergyServices, Houston, 1999)

    Google Scholar 

  38. B. Blümich, J. Perlo, F. Casanova, Progr Nucl Magn Reson Spectrosc 52(4), 197–269 (2008). https://doi.org/10.1016/j.pnmrs.2007.10.002

    Article  Google Scholar 

  39. J. Perlo, F. Casanova, B. Blümich, J Magn Reson 176(1), 64–70 (2005). https://doi.org/10.1016/j.jmr.2005.05.017

    Article  ADS  Google Scholar 

  40. E. Rössler, C. Mattea, S. Stapf, J Magn Reson 251, 43–51 (2015). https://doi.org/10.1016/j.jmr.2014.10.014

    Article  ADS  Google Scholar 

  41. G. Licsandru, M. Prat, Phys Rev Fluids (2022). https://doi.org/10.1103/PhysRevFluids.7.064304

    Article  Google Scholar 

  42. N. Shokri, Phys Fluids (2014). https://doi.org/10.1063/1.4861755

    Article  Google Scholar 

  43. M. Steiger, S. Asmussen, Geochim Et Cosmochim Acta 72(17), 4291–4306 (2008). https://doi.org/10.1016/j.gca.2008.05.053

    Article  ADS  Google Scholar 

  44. S. Haber-Pohlmeier, S. Stapf, A. Pohlmeier, Appl Magn Reson 45(10), 1099–1115 (2014). https://doi.org/10.1007/s00723-014-0599-2

    Article  Google Scholar 

  45. P. Lehmann, D. Or, Phys. Rev. E 80, 046318 (2009). https://doi.org/10.1103/PhysRevE.80.046318

    Article  ADS  Google Scholar 

  46. A.G. Tershchenko, J Chem Thermodyn. 171, 106790 (2022). https://doi.org/10.1016/j.jct.2022.106790

    Article  Google Scholar 

  47. L.R. Stingaciu, A. Pohlmeier, D. van Dusschoten, L. Weihermüller, P. Blümler, S. Stapf, H. Vereecken, Water Resour. Res. 45, W08412 (2009)

    Article  ADS  Google Scholar 

  48. S. Haber-Pohlmeier, S. Stapf, D. van Dusschoten, A. Pohlmeier, Open Magn Reson J 3, 57–62 (2010)

    Google Scholar 

Download references

Acknowledgements

AP and SH-P are grateful to Uri Nachshon, Volcani Institute, Israel, for helpful discussion of precipitation phenomena, and the Deutsche Forschungsgemeinschaft (DFG), SFB1313, IP05 for financial support. RW, KL, CM and SS would like to thank Kerstin Geyer for assistance with the sample preparation.

Funding

DFG, SFB 1313.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CM, SHP. Data curation, formal analysis: RW, CM, SHP. Funding acquisition: SS, SHP, AP. Investigation: RW (lead), CM, SHP. Methodology, project administration: SS, AP, SHP. Resources: SS, AP, SHP. Software: CM. Supervision: CM, KL. Validation: KL. Visualization: RW, CM, AP. Writing—original draft: SS, AP, SHP. Writing—review and editing: CM, KL, SHP.

Corresponding author

Correspondence to Siegfried Stapf.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wieboldt, R., Lindt, K., Pohlmeier, A. et al. Effects of Salt Precipitation in the Topmost Soil Layer Investigated by NMR. Appl Magn Reson 54, 1607–1631 (2023). https://doi.org/10.1007/s00723-023-01568-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01568-1

Navigation